CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo Spring 2012

Outline

- Minimum Forms of Switching Functions
- Two- and Three-Variable Karnaugh Maps
- Four-Variable Karnaugh Maps

Minimum Forms of Switching Functions (1/5)

- A minimum sum-of-products expression for a function is designed as a sum of product terms which
- Has a minimum number of terms
- Has a minimum number of literals

Minimum Forms of Switching Functions (2/5)

- The logic algebraic techniques can be used to simplify a logic expression to its minimum sum-of-products.
- However, the procedures are difficult to apply in a systematic way and it is difficult to tell when you have arrived at a minimum solution.

Minimum Forms of Switching Functions (3/5)

- Given a minterm expansion, the minimum sum-of-products form can often be obtained by the following procedure:
- Combine terms by using $X Y^{\prime}+X Y=X$ to eliminate as many terms as possible.
- Eliminate redundant terms by using the consensus theorem or other theorems.
- The result may depend on the order in which terms are combined or eliminated.

Minimum Forms of Switching Functions (4/5)

- Example:
- $F(a, b, c)=s u m[m(0,1,2,5,6,7)]$
$-=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b{ }^{\prime} c+a b c$ '+abc
$-=a^{\prime} b^{\prime} c^{\prime}+\underline{a^{\prime}} b^{\prime} c+\underline{a}{ }^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c^{\prime}+a b c$
$-=a^{\prime} b^{\prime}+b^{\prime} c+b c^{\prime}+a b$

Minimum Forms of Switching Functions (5/5)

- Example: (cont)
- $F(a, b, c)=s u m[m(0,1,2,5,6,7)]$
$-=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c$
$-=a^{\prime} b^{\prime}+b c^{\prime}+a c$

Two- and Three-Variable Karnaugh Maps (1/10)

- In a Karnaugh map, minterms in adjacent squares of the map can be combined since they differ in only one variable. The combinable terms are looped in the Karnaugh map.

$A B$	F
00	1
01	1
10	0
11	0

$B^{A} 0$		
0	1	0
1	1	0
(b)		

Two- and Three-Variable Karnaugh Maps (2/10)

- In a three-variable (A,B,C) Karnaugh map, the value of one variable A is listed across the top of the map, and the values of the other two variables (B, C) are listed along the side of the map.
- Note the rows are labeled in the sequence $00,01,11,10$, why?

Two- and Three-Variable Karnaugh Maps (3/10)

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$A B C=001, F=0$

Two- and Three-Variable Karnaugh Maps (4/10)

- In a three-variable Karnaugh map, the top and bottom rows of the map are defined to be adjacent because the corresponding minterms in these rows differ in only one variable.

Two- and Three-Variable Karnaugh

 Maps (5/10)| $b c$ | 0 | 1 | |
| :---: | :---: | :---: | :---: |
| 00 | 000 | | 100 is adjacent to 110 |
| 01 | 001 | 101 | |
| 11 | 011 | >111 | |
| | 4 | | |
| | 10 | | |
| 10 | 010 | 110 | |

(a) Binary notation

(b) Decimal notation

Two- and Three-Variable Karnaugh Maps (6/10)

- How would you loop minterms in this
Karnaugh map?

Two- and Three-Variable Karnaugh Maps (7/10)

- How to plot 1s in a Karnaugh map for the following expressions and loop all you can loop:
$-F(a, b, c)=a^{\prime} b c+a b c^{\prime}+a b c+a^{\prime} b c^{\prime}$
$-F(a, b, c)=a b c^{\prime}+b^{\prime} c+a^{\prime}$
$-F(a, b, c)=b^{\prime} c^{\prime}+a b+b c{ }^{\prime}$
$-F(a, b, c)=a b+a^{\prime} c$

Two- and Three-Variable Karnaugh Maps (8/10)

- Two terms in adjacent squares on the map differ in only one variable and can be combined using the theorem $X Y^{\prime}+\mathrm{XY}=\mathrm{X}$
- Two adjacent "loops" that differ only one variable can be combined.

Two- and Three-Variable Karnaugh Maps (9/10)

-The Karnaugh map can also illustrate the consensus theorem $X Y+X^{\prime} Z+Y Z=X Y+X^{\prime} Z$

$$
x y+x^{\prime} z+y z=x y+x^{\prime} z
$$

Two- and Three-Variable Karnaugh Maps (10/10)

- The simplification using Karnaugh maps can also result in different solutions.

Four-Variable Karnaugh Maps (1/9)

- Are m_{8} and m_{0} adjacent?
- Are m_{2} and m_{10} adjacent?
- Are $l o o p_{0 \& 8}$ and loop $_{2 \& 10}$ adjacent?

Four-Variable Karnaugh Maps (2/9)

- Minterms can be combined in group of 2, 4 , or 8 to eliminate 1,2 , or 3 variables.

(b)

Four-Variable Karnaugh Maps (3/9)

		00	01	11
${ }^{\infty}$	10	10	1	1
${ }^{\circ}$	1	1	1	
${ }^{\circ}$	1	1	1	
11				
${ }^{10}$				

Anything wrong?

Four-Variable Karnaugh Maps (4/9)

	0	1
∞	1	
${ }^{1}$	1	
${ }^{11}$	1	
${ }^{10}$		

Anything wrong?

Four-Variable Karnaugh Maps (5/9)

- Minterms can be combined in group of 2, 4 , or 8 to eliminate 1, 2, or 3 variables.
- The number of minterms, contained in a loop, can only be a power of 2 .

Four-Variable Karnaugh Maps (6/9)

- $F(a, b, c, d)=a^{\prime} b+a c d+d^{\prime}$

Can you simplify this further?

Four-Variable Karnaugh Maps (7/9)

- Minterm Expansion: $F(a, b, c, d)=b c^{\prime}+a^{\prime} b^{\prime} d+a b ' c d^{\prime}$

$C D$	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

Four-Variable Karnaugh Maps (8/9)

- Extension to functions with "don't care" terms
- "do not care" terms are indicated by X's in Karnaugh map.
- The X's are only used if they will simpify the resulting expression.

Four-Variable Karnaugh Maps (9/9)

