CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo Spring 2012

Outline

- A Sequential Parity Checker
- "01" Detector
- Analysis by Signal Tracing and Timing Charts

A Sequential Parity Checker (1/13)

- Parity bit is used to detect errors.
- Example:
- 7 data bits
parity bits
- 0000000

0

- 0000001

1

- 0110110 0
- 1010101

1

- 0111000

1

A Sequential Parity Checker (2/13)

- Parity checker
- A group of bits is applied to X
- Z indicates the parity.

A Sequential Parity Checker (3/13)

- Goals
- Decide how many flip-flops (FFs) are needed
- Decide the expressions for flip-flop (FF) inputs
- Decide the expression for the final output
- Tools
- Time waveform
- State graph
- State table

A Sequential Parity Checker (4/13)

- Time waveform
- Can help us understand the problem.
- But cannot help in developing logic expressions.

A Sequential Parity Checker (5/13)

- State graph
- States are independent of circuit realization.
- They reflect what've happened and maybe also indicate the output.

State zero, where the output is zero.

A Sequential Parity Checker (6/13)

- In a parity checker, only two states are needed.
- S_{0} : even number of 1's have been received.
$-S_{1}$: odd number of 1 's have been received.

All possible transitions have been considered.

A Sequential Parity Checker (7/13)

- State table
- Can be realization-free.

Present State	Next State		Present Output (Z)
S_{0}	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	1

A Sequential Parity Checker (8/13)

- State table (cont)
- Two states can be represented by 1 bit.

Present	Next State		Present Output (Z)
State	$\mathrm{X}=0$	$x=1$	
$\mathrm{S}_{0} 0$	$\mathrm{S}_{0} 0$	$\mathrm{S}_{1} 1$	0
$\mathrm{S}_{1} 1$	$\mathrm{S}_{1} 1$	$\mathrm{S}_{0} 0$	1

A Sequential Parity Checker (9/13)

- State table (cont)
- Say we are using a T flip-flop (FF) $\left(\mathrm{Q}^{+}=\mathrm{Q}\right.$ xor T$)$

Present State Q	Next State $\mathrm{X}=0$		Q^{+} $\mathrm{X}=1$
0	$\mathrm{~T}=0$	0	1

How can we decide T's?

A Sequential Parity Checker (10/13)

- State table (cont)
- Say we are using a T flip-flop (FF) $\left(\mathrm{Q}^{+}=\mathrm{Q}\right.$ xor T$)$

Q	$\mathrm{X}=0$	$\mathrm{Q}=1$	Present Output (Z)
0	$0 / 0$	$1 / 1$	0
1	$1 / 0$	$0 / 1$	1

A Sequential Parity Checker (11/13)

- State table (cont)
- What is the expression for T ? $T=X$

Q	$\mathrm{X}=0$	$\mathrm{Q}^{+} / \mathrm{T}=1$	Present Output (Z)
0	$0 / 0$	$1 / 1$	0
1	$1 / 0$	$0 / 1$	1

A Sequential Parity Checker (12/13)

- State table (cont)
- What is the expression for Z ?
$Z=Q$

Q	$\mathrm{X}=0$	$\mathrm{X}=1$	$\begin{array}{l}\text { Present } \\ \text { Output (Z) }\end{array}$
0	$0 / 0$	$1 / 1$	0
1	$1 / 0$	$0 / 1$	1

A Sequential Parity Checker (13/13)

- Parity check

"01" Detector (1/10)

- Detects bit pattern "01" in a serial input
- Input:

0111110100

- Output: 0100000100

"01" Detector (2/10)

- State graph
- We do not necessarily know how many states are needed ahead of time.
- We can assume an initial state which is before any input.
- Then there will be two transitions from the initial state and they are triggered by 0 and 1.
- A transition may introduce a new state.

"01" Detector (3/10)

"01" Detector (4/10)

- S_{0} : nothing has been received to make a "01".
- S_{1} : "0" has been received.
- S2: "01" has been received.

How many bits are needed to represent S_{0-2} ?

"01" Detector (5/10)

- State table

Present State	Next State		Present Output (Z)
S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	1

"01" Detector (6/10)

- State table (cont)
- Encode states
$-\mathrm{S}_{0}: 00$
$-S_{1}: 01$
$-\mathrm{S}_{2}: 10$

"01" Detector (7/10)

- State table (cont)
 Present State

Next State $\mathrm{Q}_{1}{ }^{+} \mathrm{Q}_{0}{ }^{+} \mid$Present
$\mathrm{S}_{0} 00$
$S_{1} 01$
$\mathrm{S}_{2} 10$
$S_{1} 01$

| $S_{0} 00 \quad 1$ |
| :--- | :--- |

"01" Detector (8/10)

- State table (cont): T flip-flops (FFs) are used

$\mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{X}=0$	$\mathrm{Q}_{1}{ }^{+} \mathrm{Q}_{0}^{+} /$IT $\mathrm{T}_{1} \mathrm{~T}_{0}$ $\mathrm{X}=1$	Present Output (Z)
00	$01 / 01$	$00 / 00$	0
01	$01 / 00$	$10 / 11$	0

"01" Detector (9/10)

- What are the expressions for $T_{1}, T_{0}, \& Z$?

$\mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{X}=0$	$\mathrm{Q}_{1}^{+} \mathrm{Q}_{0}^{+} /$T $\mathrm{T}_{1} \mathrm{~T}_{0}$ $\mathrm{X}=1$	Present Output (Z)
00	$01 / 01$	$00 / 00$	0
01	$01 / 00$	$10 / 11$	0

"01" Detector (10/10)

- $\mathrm{Q}_{1} \mathrm{Q}_{0} \times \mathrm{T}_{1} \mathrm{~T}_{0} \quad \mathrm{Z}$
- 000000010
- 00010000
- $0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$
- $0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$
- 10000111
- $1 \begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1\end{array}$
- $1100 \times \times$
- $1111 \begin{array}{llll}1 & 1\end{array}$

Minterms \rightarrow expressions!!

Analysis by Signal Tracing and Timing Charts (1/6)

- Moore machine
- The output depends only on the present state of the flip-flops (FFs).
$-Z=F\left(Q_{n}, Q_{n-1}, \ldots, Q_{1}, Q_{0}\right)$
- Mealy machine
- The output depends not only on the present state, but also the value of the circuit inputs.
$-\mathrm{Z}=\mathrm{F}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{n}-1}, \ldots, \mathrm{Q}_{1}, \mathrm{Q}_{0}, \mathrm{X}_{\mathrm{m}}, \mathrm{X}_{\mathrm{m}-1}, \ldots, \mathrm{X}_{1}, \mathrm{X}_{0}\right)$

Analysis by Signal Tracing and Timing Charts (2/6)

- Because flip-flops (FFs) only respond to input at rising/falling edges, the output of a Moore machine only changes at rising/falling edges.

Analysis by Signal Tracing and Timing Charts (3/6)

Analysis by Signal Tracing and Timing Charts (4/6)

- In a Mealy machine, outputs changes when flip-flops (FFs) and/or circuit input change.
- Therefore, when the circuit output changes is independent of rising/falling edges.

> Analysis by
> Signal Tracing and Timing
> Charts (5/6)

Analysis by Signal Tracing and Timing Charts (6/6)

- In a Mealy machine, the output is read immediately before the rising/falling edge.

