CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Outline

- Registers and Register Transfers
- Shift Registers
- Design of Binary Counters
- Counters for Other Sequences
- Counter Design Using SR and JK FlipFlop (FFs)
- Derivation of Flip-Flop (FF) Input Equations

Registers and Register Transfers (1/8)

- In a D flip-flop (FF)
$-\mathrm{Q}^{+}=\mathrm{D}$, triggered on the rising/falling edge
- CIrN clears Q asynchronously.

Registers and Register Transfers (2/8)

- Each flip-flop (FF) can store one bit of information. Four of them can form a register of 4 bits

Data out

Data in

Registers and Register Transfers (3/8)

- Alternatively, CE inputs can be used.

Data in

Registers and Register Transfers (4/8)

- Bus notation.

Registers and Register Transfers

 (5/8)- Example 1: transfer data from one of two registers into a third register.

- En=1, what will be stored in Q ?
- $\mathrm{En}=0$, what will be stored in Q ?
- Example 2: using a decoder in selecting register

- What happens when $\mathrm{E}, \mathrm{F}, \mathrm{LdG}, \mathrm{LdH}=1101$?
- What happens when $E, F, L d G, L d H=0011$?

Registers and Register Transfers (7/8)

- Accumulator

- Only when $A d=1$, the number X in the accumulator will be replaced with the sum of X and Y .

Registers and Register Transfers (8/8)

- Accumulator

- How to implement:
-mov A, 1101 ; save 1101 to the accumulator -add A, 0011 ; add 0011 to the accumulator

Shift Registers (1/6)

(a) Flip-flop connections

$$
\mathrm{Q}^{+}=\mathrm{D}
$$

Shift=1 enables the clock and assume $\mathrm{SI}=1$ Rising Edge
Initial States:

$$
\begin{aligned}
& \mathrm{Q}_{3}=0 \\
& \mathrm{Q}_{2}=1 \\
& \mathrm{Q}_{1}=0 \\
& \mathrm{Q}_{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}_{3}{ }^{+}=\mathrm{D} 3=\mathrm{SI} \\
& \mathrm{Q}_{2}{ }^{+}=\mathrm{D} 2=\mathrm{Q} 3 \\
& \mathrm{Q}_{1}{ }^{+}=\mathrm{D} 1=\mathrm{Q} 2 \\
& \mathrm{Q}_{0}{ }^{+}=\mathrm{D} 0=\mathrm{Q} 1
\end{aligned}
$$

$$
\mathrm{Q}_{3}{ }^{+}=1
$$

$$
\mathrm{Q}_{2}{ }^{+}=0
$$

SI is shifted in.

$$
\mathrm{Q}_{1}^{+}=1
$$

$\mathrm{Q}_{\underline{0}}$ is shifted out.

$$
\mathrm{Q}_{0}{ }^{+}=0
$$

Shift Registers (2/6)

(a) Flip-flop connections

- Before the rising edge: $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1101$
- What are they after the rising edge?

Shift Registers (3/6)

- Can you design a four-bit shift/rotate register? Two external control signals are shift and rotate.
- shift\&rotate can be 00/01/10

Shift Registers (4/6)

- 4-bit parallel-in, parallel-out shift register

Sh	L	$\mathrm{Q}_{3}{ }^{+} \mathrm{Q}_{2}^{+}$	Q_{1}^{+}	Q_{0}^{+}	action	
0	0	Q_{3}	Q_{2}	Q_{1}	Q_{0}	no change
0	1	D_{3}	D_{2}	D_{1}	D_{0}	load
1	X	SI	Q_{3}	Q_{2}	Q_{1}	right shift

Shift Registers (5/6)

-4-bit parallel-in, parallel-out shift register (cont)

Shift Registers (6/6)

- How can we design a bi-directional shift register with two external control signals: S0 and S1?
$-\mathrm{S}_{0} \mathrm{~S}_{1}=00$ nothing happens
$-\mathrm{S}_{0} \mathrm{~S}_{1}=01$ shift right
$-S_{0} S_{1}=10$ shift left
$-\mathrm{S}_{0} \mathrm{~S}_{1}=11$ load new contents

Design of Binary Counters (1/11)

C B A

Design of Binary Counters (2/11)

- Design based on T flip-flops (FFs) $\mathrm{Q}^{+}=\mathrm{T}$ xor Q
- Truth table

CBA $\mathrm{C}^{+} \mathrm{B}^{+} \mathrm{A}^{+}$
000001
001010
$010 \quad 0 \quad 11$

- A changes state anyway $\left(A^{+}=A^{\prime}\right)$.
- $T_{A}=1$
- $\mathrm{B}^{+}=\mathrm{A}$ xor B
- $T_{B}=A$

011100
100101
101110
110111
111000

Design of Binary Counters (3/11)

- Design based on T flip-flops (FFs)

3 bit counter

Design of Binary Counters (4/11)

- How can we design based on D flip-flops (FFs)?
$-\mathrm{Q}^{+}=\mathrm{D}$
$-A^{+}=A^{\prime}$
$\rightarrow D_{A}=A^{\prime}=A$ xor 1
$-\mathrm{B}^{+}=\mathrm{A}$ xor $\mathrm{B} \quad \rightarrow \mathrm{D}_{\mathrm{B}}=\mathrm{A}$ xor B
$-\mathrm{C}^{+}=\mathrm{AB}$ xor $\mathrm{C} \quad \rightarrow \mathrm{D}_{\mathrm{C}}=\mathrm{AB}$ xor C
- Note $A^{\prime}=A$ xor 1 and $A=A$ xor 0

Design of Binary Counters (5/11)

Design of Binary Counters (6/11)

- Up-down binary counter

Two controls signals: U and D

Design of Binary Counters (7/11)

- Process of designing up-down counter
- Number of control signals: two (up and down)
- Number of possible control modes
- UD=10 counting up
- UD=01 counting down
- UD=00 no change
- UD=11 restricted

Design of Binary Counters (8/11)

- Process of designing up-down counter (cont)
- For each control mode, draw truth tables and decide the logic expressions
- UD=00 $\mathrm{A}^{+}=\underline{\mathrm{A} \text { xor } 0, ~} \mathrm{~B}^{+}=\mathrm{B}$ xor $0, \mathrm{C}^{+}=\mathrm{C}$ xor 0
- UD=10 $A^{+}=A$ xor $1, B^{+}=B$ xor $A, C^{+}=C$ xor $A B$
- $\operatorname{UD}=01 \mathrm{~A}^{+}=\underline{A}$ xor 1, $\underline{B}^{+}=\mathrm{B}$ xor $\mathrm{A}^{\prime}, \underline{\mathrm{C}^{+}=C} \mathbf{C o r} \mathrm{~A}^{\prime} \mathrm{B}^{\prime}$
- Put them together. For example
- $\mathrm{B}^{+}=\underline{\text { U'D }^{\prime}}(\mathrm{B}$ xor 0$)+$
- $\quad \underline{U} D\left(B\right.$ xor $\left.A^{\prime}\right)+$

Can be realized using

- $\quad \underline{U D}(B$ xor $A)$

Design of Binary Counters (9/11)

- Process of designing up-down counter (cont)
- In the textbook, these expressions are written as
$-\mathrm{A}^{+}=\mathrm{A} \operatorname{xor}(\mathrm{U}+\mathrm{D})$
$-\mathrm{B}^{+}=\mathrm{B}$ xor (UA+DA')
$-\mathrm{C}^{+}=\mathrm{C}$ xor (UBA+DB'A')

Design of Binary Counters (10/11)

- Process of designing up-down counter (cont)
- Because $\mathrm{Q}^{+}=\mathrm{D}$ in D flip-flop (FFs),
- $D_{A}=A^{+}=A$ xor (U+D)
- $\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{+}=\mathrm{B}$ xor (UA+DA')
- $\mathrm{D}_{\mathrm{C}}=\mathrm{C}^{+}=\mathrm{C}$ xor (UBA+DB'A')

Design of Binary Counters (11/11)

Counters for Other Sequences (1/5)

- In some applications, the sequence of states of a counter is not in straight binary order.

Counters for Other Sequences (2/5)

- The method is very similar to the one for designing a binary counter.

1. A truth table that shows the relationship between current states and next states.
2. Decide the expressions for $T, J K, S R$, or D depending on which kind of flip-flop (FF) you are using.

Counters for Other Sequences (3/5)

Inputs
$C B A \quad C^{+} B^{+} A^{+} \quad T_{C} T_{B} T_{A}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$
$0 \begin{array}{llll}0 & 1 & - & \times\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$
$101-\cdots \times \times$
$110-\cdots \times \times$
$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$

Say we are using T flipflop (FF).

Counters for Other Sequences $(4 / 5)$

- Next we need to develop the expressions for T_{A}, T_{B}, and T_{C}.

$T_{B}=C^{\prime} A+C B^{\prime}$

Note the variables are A, B, C

Counters for Other Sequences (5/5)

- How to design based on D flip-flop (FFs)?

$$
\begin{array}{cccccccc}
C & B & A & C^{+} & B^{+} & A^{+} & D_{C} & D_{B} \\
0 & 0 & D_{A} \\
0 & 0 & 1 & 1 & 0 & - & 0 & \\
1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & - & 1 & - \\
0 & 1 & - \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array} 1
$$

Counter Design Using S-R and J-K Flip-Flops (FF) (1/7)

- Steps for designing counters
- Draw truth table Problem specification
- Decide the required values for flip-flop (FF) inputs
- Given current and next states, decide the required inputs.
- Decide the expressions for the inputs to FFs
- $T=F(C, B, A)$
- $D=F(C, B, A)$
- Etc.

Minterms \rightarrow Karnaugh maps

Counter Design Using S-R and J-K

 Flip-Flop (FFs) (2/7)- The easiest one
$-\mathrm{Q}^{+}=\mathrm{D} \rightarrow \mathrm{Q}^{+}$
- T flip-flop (FF)
$-\mathrm{Q}^{+}=\mathrm{Q}$ xor $\mathrm{T} \rightarrow \mathrm{T}=\mathrm{Q}$ xor Q^{+}

Counter Design Using S-R and J-K Flip-Flop (FFs) (3/7)

- SR (NOR based)

-Q	Q^{+}	S	R	Q	Q^{+}	S	R
-0	0	0	0	0	0	0	X
-		0	1	0	1	1	0
-0	1	1	0	1	0	0	1
-1	0	0	1	1	1	X	0
-1	1	0	0				
-		1	0				

Counter Design Using S-R and J-K Flip-Flop (FFs) (4/7)

- Counter based on SR

C	B	A	C^{+}	$B^{+} A^{+}$	S_{C}	R_{C}	S_{B}	R_{B}	S_{A}	R_{A}
0	0	0	1	0	0	1	0	0	X	0
0	0	1	-	-	-	X	X	X	X	X
0	1	0	0	1	1	0	X	X	0	1
0	1	1	0	0	0	0	X	0	1	0
1	0	0	1	1	1	X	0	1	0	1
1	0	1	-	-	-	X	X	X	X	X
1	1	0	-	-	-	X	X	X	X	X
1	1	1	0	1	0	0	1	X	0	0

Counter Design Using S-R and J-K Flip-Flop (FFs) (5/7)

- Use Karnaugh maps to simplify. (Do not forget the do-not-care terms)

Counter Design Using S-R and J-K Flip-Flop (FFs) (6/7)

Counter Design Using S-R and J-K Flip-Flop (FFs) (7/7)

- JK

-Q	Q^{+}	J	K	Q	Q^{+}	J	K
-0	0	0	0	0	0	0	X
-		0	1	0	1	1	X
-0	1	1	0				
-		1	1	0	X	1	
-1	0	0	1	1	1	X	0
-		1	1				
-1	1	0	0				
-		1	0				

