CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski

Developed by: Dr. Dahai Guo

Spring 2012

Outline

- Registers and Register Transfers
- Shift Registers
- Design of Binary Counters
- Counters for Other Sequences
- Counter Design Using SR and JK Flip-Flop (FFs)
- Derivation of Flip-Flop (FF) Input Equations

Registers and Register Transfers (1/8)

- In a D flip-flop (FF)
 - Q+=D, triggered on the rising/falling edge
 - CIrN clears Q asynchronously.

Registers and Register Transfers (2/8)

 Each flip-flop (FF) can store one bit of information. Four of them can form a register of 4 bits

Registers and Register Transfers (3/8)

Alternatively, CE inputs can be used.

Registers and Register Transfers (4/8)

Bus notation.

Registers and Register Transfers (5/8)

 Example 1: transfer data from one of two registers into a third register.

- En=1, what will be stored in Q?
- En=0, what will be stored in Q?

Registers and Register Transfers (6/8)

Example 2: using a decoder in selecting register

- What happens when E, F, LdG, LdH=1101?
- What happens when E, F, LdG, LdH=0011?

Registers and Register Transfers (7/8)

Accumulator

 Only when Ad=1, the number X in the accumulator will be replaced with the sum of X and Y.

Registers and Register Transfers (8/8)

Accumulator

How to implement:

•mov A, 1101; save 1101 to the accumulator

•add A, 0011; add 0011 to the accumulator

Shift Registers (1/6)

Q+=D

Initial States:

$$Q_3 = 0$$

$$Q_2 = 1$$

$$Q_1 = 0$$

$$Q_0 = 1$$

Shift=1 enables the clock and assume SI=1
Rising Edge

$$Q_2^{+}=D2=Q3$$

$$Q_1^{+}=D1=Q2$$

$$Q_3^+ = 1$$

$$Q_2^+ = 0$$

$$Q_1^+ = 1$$

$$Q_0^+ = 0$$

SI is shifted in.

Q₀ is shifted out.

Shift Registers (2/6)

- Before the rising edge: Q₃Q₂Q₁Q₀=1101
- What are they after the rising edge?

Shift Registers (3/6)

- Can you design a four-bit shift/rotate register? Two external control signals are shift and rotate.
 - shift&rotate can be 00/01/10

Shift Registers (4/6)

4-bit parallel-in, parallel-out shift register

Sh	L	Q_3^+	Q_2^+	Q_1^+	Q_0^+	action
0	0	Q_3	Q_2	Q_1	Q_0	no change
0	1	D_3	D_2	D_1	D_0	load
1	X	SI	Q_3	Q ₂	Q_1	right shift

Shift Registers (5/6)

•4-bit parallel-in, parallel-out shift register (cont)

Shift Registers (6/6)

- How can we design a bi-directional shift register with two external control signals: S0 and S1?
 - $-S_0S_1=00$ nothing happens
 - $-S_0S_1=01$ shift right
 - $-S_0S_1=10$ shift left
 - $-S_0S_1=11$ load new contents

Design of Binary Counters (1/11)

Design of Binary Counters (2/11)

 Design based on T flip-flops (FFs) Q+ = T xor Q

```
- Truth table
CBA C+B+A+
000 0 0 1
001 0 1 0
010 0 1 1
011 1 0 0
100 1 0 1
101 1 1 0
110 1 1 1
111 0 0 0
```

- A changes state anyway (A+ = A').
 - $-T_A = 1$
- $B^+ = A \times B$
 - $\bullet T_B = A$
- C+ = AB xor C
 - $\bullet T_C = AB$

Design of Binary Counters (3/11)

Design based on T flip-flops (FFs)

3 bit counter

Design of Binary Counters (4/11)

 How can we design based on D flip-flops (FFs)?

$$-Q^+=D$$

$$-A^{+}=A'$$

$$-B^+ = A \text{ xor } B$$

$$-C^+ = AB xor C$$

$$\rightarrow$$
 D_A = A' = A xor 1

$$\rightarrow$$
 D_B = A xor B

$$-C^+ = AB xor C$$
 $\rightarrow D_C = AB xor C$

Note A' = A xor 1 and A = A xor 0

Design of Binary Counters (5/11)

Design of Binary Counters (6/11)

Up-down binary counter

Two controls signals: U and D

Design of Binary Counters (7/11)

- Process of designing up-down counter
 - Number of control signals: two (up and down)
 - Number of possible control modes
 - UD=10 counting up
 - UD=01 counting down
 - UD=00 no change
 - UD=11 restricted

Design of Binary Counters (8/11)

- Process of designing up-down counter (cont)
 - For each control mode, draw truth tables and decide the logic expressions
 - UD=00 A+ = A xor 0, B+ = B xor 0, C+ = C xor 0
 - UD=10 A+ = A xor 1, B+ = B xor A, C+ = C xor AB
 - UD=01 A+ = A xor 1, B+ = B xor A', C+ = C xor A'B'
 - Put them together. For example
 - $B^+ = U'D'(B \times 0) +$
 - <u>U'D(B xor A')+</u>
 - <u>UD'</u>(B xor A)

Can be realized using multiplexers.

Design of Binary Counters (9/11)

- Process of designing up-down counter (cont)
 - In the textbook, these expressions are written as
 - $-A^+ = A xor (U+D)$
 - $-B^+ = B xor (UA+DA')$
 - $-C^+ = C \text{ xor } (UBA+DB'A')$

Design of Binary Counters (10/11)

- Process of designing up-down counter (cont)
 - Because Q+=D in D flip-flop (FFs),
 - $D_A = A^+ = A \operatorname{xor} (U+D)$
 - $D_B = B^+ = B \times (UA+DA')$
 - $D_C = C^+ = C \text{ xor } (UBA+DB'A')$

Design of Binary Counters (11/11)

Counters for Other Sequences (1/5)

 In some applications, the sequence of states of a counter is not in straight binary order.

Counters for Other Sequences (2/5)

- The method is very similar to the one for designing a binary counter.
 - 1. A truth table that shows the relationship between current states and next states.
 - Decide the expressions for T, JK, SR, or D depending on which kind of flip-flop (FF) you are using.

Counters for Other Sequences (3/5)

In	out	S	Outputs					
C	В	A	C+	B	+ A+	T_C	TB	TA
0	0	0	1	0	0	1	0	0
0	0	1		-		X	X	X
0	1	0	0	1	1	0	0	1
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	0	1	1
1	0	1		-		X	X	X
1	1	0				X	X	X
1	1	1	0	1	0	1	0	1

Say we are using T flip-flop (FF).

Counters for Other Sequences (4/5)

Next we need to develop the expressions for T_A,
 T_B, and T_C.

Note the variables are A, B, C

Counters for Other Sequences (5/5)

How to design based on D flip-flop (FFs)?

```
C B A C+ B+ A+
                 D<sub>C</sub> D<sub>B</sub> D<sub>A</sub>
              100
0 0 0 1 0 0
0 0 1 - - -
0 1 0 0 1 1 0 1 1
0 1 1 0 0 0 0 0 0
1 0 0 1 1 1
```

Counter Design Using S-R and J-K Flip-Flops (FF) (1/7)

- Steps for designing counters
 - Draw truth table

Problem specification

- C B A C+ B+ A+
- Decide the required values for flip-flop (FF) inputs
 - Given current and next states, decide the required inputs.
- Decide the expressions for the inputs to FFs
 - T=F(C, B, A)
 - D=F(C, B, A)
 - Etc.

Minterms → Karnaugh maps

Counter Design Using S-R and J-K Flip-Flop (FFs) (2/7)

The easiest one

$$-Q^+=D \rightarrow Q^+$$

T flip-flop (FF)

$$-Q^+ = Q xor T \rightarrow T = Q xor Q^+$$

Counter Design Using S-R and J-K Flip-Flop (FFs) (3/7)

SR (NOR based)

- <u>Q</u>	Q ⁺	S	R	Q	Q ⁺	S	R
-0	0	0	0	0	0	0	X
		0		0	1	1	0
-0	1	1	0	→ 1	0	0	1
-1	0	0		1	1	X	0
-1	1	0	0				
-		1	0				

Counter Design Using S-R and J-K Flip-Flop (FFs) (4/7)

Counter based on SR

C	В	Α	C+	B+	A ⁺	Sc	R_{C}	S _B	R_B	SA	R_A
0	0	0	1	0	0	1	0	0	X	0	X
0	0	1		-	-	X	X	X	X	X	X
0	1	0	0	1	1	0	X	X	0	1	0
0	1	1	0	0	0	0	X	0	1	0	1
1	0	0	1	1	1	X	0	1	0	1	0
1	0	1				X	X	X	X	X	X
1	1	0			-	X	X	X	X	X	X
1	1	1	0	1	0	0	1	X	0	0	1

Counter Design Using S-R and J-K Flip-Flop (FFs) (5/7)

 Use Karnaugh maps to simplify. (Do not forget the do-not-care terms)

Counter Design Using S-R and J-K Flip-Flop (FFs) (6/7)

Counter Design Using S-R and J-K Flip-Flop (FFs) (7/7)

• JK

- <u>Q</u>	Q ⁺	J	K	Q	Q ⁺	J	K
- 0	0	0	0	0	0	0	X
		0	生 1 / 1	0	1	1	X
- 0	1	1	0	1	0	X	1
_		1	1	1	1	X	0
- 1	0	0	1				
		1	1				
- 1	1	0	0				
		1	0				