CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo Spring 2012

Outine

- Data Representation
- Binary Codes
- Why 6-3-1-1 and Excess-3?

Data Representation (1/2)

- Each numbering format, or system, has a base, or maximum number of symbols that can be assigned to a single digit.

System	Base	Possible Digits
Binary	2	0,1
Octal	8	$0,1,2,3,4,5,6,7$
Decimal	10	$0,1,2,3,4,5,6,7,8,9$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

Data Representation (2/2)

- Binary: 11110101
- Octal: 365
- Decimal: 245
- Hexadecimal: F5

Binary Numbers (1/7)

- A computer stores instructions and data in memory as collections of electronic charges.
- 1 = "on" \rightarrow voltage at output of electronic device is high (saturated).
- $0=$ "off" \rightarrow voltage at output of electronic device is zero.

Binary Numbers (2/7)

- Each digit (strictly, position of a digit) in a binary number is called a bit.
- In a binary number, bits are usually numbered starting at zero on the right side, and increasing toward the left.
- The bit on the left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).

Binary Numbers (3/7)

Binary Numbers (4/7)

- Unsigned binary integers
- Can only be positive or zero
- Translating unsigned binary integers to decimal
$-\operatorname{dec}=\left(D_{n-1} 2^{n-1}\right)+\left(D_{n-2} * 2^{n-2}\right)+\ldots . .+\left(D_{1} * 2^{1}\right)+\left(D_{0} * 2^{0}\right)$
- 11110101 ($\mathrm{n}=8$)
$-D_{7}=1, D_{6}=1, D_{5}=1, D_{4}=1, D_{3}=0, D_{2}=1, D_{1}=0, D_{0}=1$
$-\mathrm{dec}=2^{7}+2^{6}+2^{5}+2^{4}+2^{2}+2^{0}=128+64+32+16+4+1=245$

Binary Numbers (5/7)

- Translating unsigned decimal integers to binary
- Example: translating 37 to binary

Division	Quotient	Remainder
$37 / 2$	18	1
$18 / 2$	9	0
$9 / 2$	4	1
$4 / 2$	2	0
$2 / 2$	1	0
$1 / 2$	0	1

The result is 100101.

Binary Numbers (6/7)

- Binary Addition
-Beginning with the lowest (rightmost) order pair of bits.
-Proceed bit by bit
-For each bit pair.

$0+0=0$	$0+1=1$
$1+0=1$	$1+1=10$

Binary Numbers (7/7)

- Binary addition (cont)

Carry: 1

0	0	0	0	0	1	0	0

(4)

Bit position: $7 \begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Value Range

- For an n-bit unsigned binary number, the range is $0 \sim 2^{n}-1: 2^{n}$ different values.
-2 bits: 4 values $(0-3)$
-3 bits: 8 values $(0-7)$
-4 bits: 16 values $(0-15)$
-...
-8 bits (a byte): 256 values ($0-255$)
-10 bits: 1024 values $(0-1023)$

Hexadecimal Integers (1/6)

- hexadecimal numbers are often used to represent computer memory address and instructions.
- A hexadecimal digit ranges from 0 to 15 (total of sixteen).
- The letters of the alphabet are used to represent 10 through 15.
- where $A=10, B=11, C=12, D=13, E=14$, and $\mathrm{F}=15$

Hexadecimal Integers (2/6)

Decimal Hexadecimal Binary

- Each hexadecimal digit means a four binary bit string.
- Every four binary bit string can be mapped to a hexadecimal digit.

Hexadecimal Integers (3/6)

- If we can break up a byte (8 bits) into halves, the upper and lower halves, each half can be represented by a hexadecimal digit.
- A byte could then be represented by two hexadecimal digits, rather than 8 bits.
- In general, any binary number can be split into four-bit groups, starting from right. Each such a group can be translated into hexadecimal digit.
- The result hexadecimal is much shorter than the binary equivalent.

Hexadecimal Integers (4/6)

-101101010011110010100
-16A794
Note when you are finding four bit groups, begin from the right.

Hexadecimal Integers (5/6)

- Converting unsigned hexadecimal to decimal.
$-\operatorname{dec}=\left(D_{n-1} * 16^{n-1}\right)+\left(D_{n-2} * 16^{n-2}\right)+\ldots . .+\left(D_{1} * 16^{1}\right)+\left(D_{0} * 16^{0}\right)$
- F5 $\boldsymbol{\rightarrow} 245$
$-D_{1}=F, D_{0}=5$
- dec=F*16 ${ }^{1}+5^{*} 16^{0}$

$$
\begin{aligned}
& =15 * 16+5 * 1 \\
& =240+5 \\
& =245
\end{aligned}
$$

Hexadecimal Integers (6/6)

- Converting unsigned decimal to hexadecimal

Division	Quotient	Remainder
$422 / 16$	26	6
$26 / 16$	1	A
$1 / 16$	0	1

The result is 1 A 6 .

Signed Integers (1/9)

- Signed integers can negative, zero and positive.
- The most significant bit in binary numbers indicates the number's sign.
- 0 means positive or zero
- 1 means negative
- When you are using signed binary numbers, the number of bits must be specified.

Signed Integers (2/9)

- When a signed binary is positive, it can be used as if it was an unsigned binary.
- When it is negative, two's complement is used the most often.
- Two's complement (TC) notation works like the negating operation
- TC(TC(number)) = number, [-(-number)=number]
- TC(number)+number=0, [-number+number=0]

Signed Integers (3/9)

- Given an eight-bit number 0000 0001, its two's complement is 11111111

Starting value
Step1: reverse the bits: 11111110
Step 2: add 1

00000001

11111111
The two's complement representation of -1 .

Signed Integers (4/9)

- Two's complement of hexadecimal
- Reversing a hexadecimal digit is subtracting the digit from 15
$-6 A 3 D \rightarrow 95 C 2+1 \rightarrow 95 C 3$
$-95 C 3 \rightarrow 6 A 3 C+1 \rightarrow 6 A 3 D$

Signed Integers (5/9)

- For a signed hexadecimal number, it is negative if its most significant digit is greater than 7. Otherwise it is zero or positive.

Signed Integers (5/9)

- Converting signed binary to decimal
- MSB=1, this binary is in two's complement notation.
- Get its two's complement (positive equivalent).
- Convert to decimal.
- Make the decimal negative.
$-\mathrm{MSB}=0$, this binary can be treated as an unsigned binary.

Signed Integers (6/9)

Starting value:
Step1: reverse the bits:
Step2: add 1
Step3: its two's complement: 00010000
Step4: convert to decimal 16
Step5: make the decimal neg: -16

Signed Integers (8/9)

- How to
- Convert signed decimal to binary?
- Convert signed decimal to hexadecimal?
- Convert signed hexadecimal to decimal?

Signed Integers (9/9)

- Maximum and Minimum Values:
- For an n-bit signed binary number, the range is $-2^{n-1}-2^{n-1}-1$

Addition of Signed Binary Numbers

 (1/3)- 13-12 (use five bits)
$-=13+(-12)$
$-=01101+T C(01100)$
$-=01101+(10011+1)$
$-=01101+10100$
- =1 00001 The carry from the MSB is discarded.
$-=00001$ in signed binary number addition.

Addition of Signed Binary Numbers (2/3)

- $13+12$ (We still use 5 bits)
- =01101+01100
$-=11001$ The result is negative!! It is an overflow.

Addition of Signed Binary Numbers (3/3)

- -12-13 (Still 5 bits)
$-=T C(12)+T C(13)$
-=TC(01100)+TC(01101)
- =(10011+1)+(10010+1)
$-=10100+10011$
-=1 00111 The carry from the MSB is discarded.
- = 00111 The result is positive!! It is an overflow.

Binary Codes (1/2)

- Binary codes: how to represent decimal digits.
- Weighted codes
- BCD codes (8-4-2-1): each decimal digit is represented by its four-bit binary equivalent.
-937: 100100110111
$-6-3-1-1$ codes: weights are $6,3,1,1$
-937: $1100 \underline{0100} 1001$

Binary Codes (2/2)

- Non-weighted codes
- Excess 3: obtained from the 8-4-2-1 code by adding 3 (0011) to each the codes.
- 937: 110001101010
- 2-out-of-5: exactly 2 out of 5 bits are 1 , has error-checking properties.
-937: $11000 \underline{01001} 10010$
- Gray code: the codes for successive decimal digits differ in exactly one bit
- 456: $0110 \underline{1110} 1010$

Why Excess-3?

- Excess-3 codes

-0	0011	
-1	0100	For a decimal digit D,
-2	0101	complement its code results
-3	0110	in the code of 9-D.
-4	0111	
-5	1000	
-6	1001	
-7	1010	
-8	1011	
-9	1100	

Why 6-3-1-1? (1/3)

- 8-4-2-1 codes
$\begin{array}{ll}-0 & 0000 \\ -1 & 0001 \\ -2 & 0010 \\ -3 & 0011 \\ -4 & 0100 \\ -5 & 0101 \\ -6 & 0110 \\ -7 & 0111 \\ -8 & 1000 \\ -9 & 1001\end{array}$

-0	0000
-1	0001
-2	0010
-3	0011
-4	0100
-5	0101
-6	0110
-7	0111
-8	1000
-9	1001

- 6-3-1-1 codes
- $0 \quad 0000$
- $1 \quad 0001$
- 20011
- 30100
- 40101
$-5 \quad 0111$
$-6 \quad 1000$
$-7 \quad 1001$
- $8 \quad 1011$
$-9 \quad 1100$

Why 6-3-1-1? (2/3)

- Lets consider the situations of 1 bit corrupted.

In 8-4-2-1 coding method, all 0001, 0010, 0100, and 1000 are valid codes.
In 6-3-1-1 coding method, only 0001, 0100, and 1000 are valid codes.
Why 6-3-1-1? (3/3)

- Lets define the concept of error rate at 1 bit corrupted to be the number of possible valid codes after being corrupted divided by 4 .
- For example, for 0000, the error rate at 1 bit corrupted is 100% when using 8-4-2-1 codes and 75% when using 6-3-1-1 codes.

