
Design Methodology and Tools for NEC Electronics’
Structured ASIC ISSP

Takumi Okamoto
NEC Corporation

1753 Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8666, Japan

okamoto@ct.jp.nec.com

Tsutomu Kimoto Naotaka Maeda
NEC Electronics Corporation

1753 Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8666, Japan

{tsutomu.kimoto, n.maeda}@necel.com

ABSTRACT
In this paper, we describe a design methodology and tools for
NEC Electronics’ structured ASIC, Instant Silicon Solution
Platform (ISSP), which is being developed to fill the gap between
FPGAs and standard cell-based ASICs. The ISSP has a unique
regular-fabric architecture designed to achieve both a short time
to production and high-performance LSI design. We have
developed a special design methodology and tools to fully exploit
the capability of this new device. Experimental results for
industrial data show that our approach has advantages for ISSP
design.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aides

General Terms
Design, Performance, Algorithm

Keywords
Structured ASIC, Regular fabric, ISSP, Placement.

1. INTRODUCTION
While the design productivity gap resulting from the latest
advances in deep-submicron process technology has been much
discussed, another gap has received much less attention until
recently – the gap between standard cell-based ASICs and FPGAs.
This gap presents a problem, particularly for mid-volume designs,
which often require ASIC performance and density that meet
product specifications and cost goals but may also need FPGA
time to production to achieve market goals. Bridging this gap
requires not only a new ASIC architecture, but also optimized
design methodology [1][2].
Design times for complex ASICs are increasing due to the need to
insert and verify designs for test (DFT) circuitry, and address
deep sub-micron design issues such as signal integrity. Even in
the FPGA world, it is not unusual to spend weeks on converging

timing, especially for highly utilized, large gate-count designs
with clock speeds exceeding 100 MHz. The rising costs of
development and non-recurring engineering (NRE) of the masks
needed to design deep sub-micron ASICs make it difficult for
designers of systems with mid-range production volumes to target
multiple respins of their prototypes. For early-stage products,
there are also risks in trying to predict the production volumes
needed to amortize these development costs. A large percentage
of today’s designs are mid-volume, i.e., between several hundreds
and 100,000 units are produced. In this range, designers must
carefully balance performance, time to market, and total cost.
Recently, several structured ASICs or regular fabrics have been
proposed by industries [3][4][5] and university researchers
[6][7][8][9][10] to cope with this situation. Typically, these
devices consist of an array of logic cells built using diffusion and
a few metal layers. Each of the logic cells contains customizable
combinatorial logic and may also contain register elements. The
mask layers required to build the logic-cell array are common to
all customer designs. The logic cells are then customized and
interconnected using a few metal layers on top that are generated
using custom masks for a given design. This approach minimizes
the number of custom masks needed to build an ASIC, thereby
reducing the upfront NRE costs, while preserving the advantages
of low unit costs, low power consumption, and the high
performance of a standard cell-based ASIC.
In terms of the design methodology and tools, many of the deep
submicron issues can be directly resolved in the construction of
the regular fabric with built-in clocks, scan chains, power
distribution, and so on. In addition, testing is greatly simplified. In
certain design phases, however, to extract the maximum
performance from a device requires design methodology and tools
specially developed for the specific device. Regular fabrics
impose some constraints on design, which puts stress on different
aspects of the design process. In some cases, for example,
mapping and placement is becoming harder while routing may be
getting easier.
In this paper, we describe a design methodology and tools for
NEC Electronics’ structured ASIC, Instant Silicon Solution
Platform (ISSP), which has been developed to fill the gap
between FPGAs and standard cell-based ASICs [3]. ISSP has a
unique regular-fabric architecture aimed at achieving both a short
time to production and high-performance LSI design. We have
developed a special design methodology and tools to fully exploit
this new device capability. Experimental results for industrial data
show that our approach has advantages for ISSP design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’04, April 18-21, 2004, Phoenix, Arizona, USA.
Copyright 2004 ACM 1-58113-817-2/04/0004…$5.00.

90

2. INSTANT SILICON SOLUTION
PLATFORM (ISSP)
The Instant Silicon Solution Platform (ISSP) is a new class of
device based on a cost-effective, high-function, easy-to-design
ASIC architecture ideal for designs requiring high-speed system
clocks and mid-range production volumes [3]. Figure 1 shows the
relationship between total volume and total cost (engineering cost
+ mask NRE + total volume ×unit cost). The ISSP is targeted at
the area between FPGAs and cell-based ASICs, i.e., mid-volume
between several hundreds and 100K units.

Figure 1: Total volume vs. total cost.

Figure 2 shows the architecture of a device in the first-generation
ISSP1-STD family (CMOS 0.15 µm technology)1, which has the
following functions embedded in a common mask (implemented
using three metal-layers):

・ Clock structure

・ SRAM

・ Analog phase-locked loops (APLLs)

・ Delay-locked loops (DLLs).

・ Complex multi-gate (CMG: multiplexer and flip-flop) array
User-logic is implemented by two individual metal layers on top
that are generated using custom masks for a given design.
Users designing with ISSP need not worry about the impact that
adding DFT might have on design time because ISSP is
preconfigured with testing methodologies such as SCAN, BSCAN,
and others. Built-in clock domains also conserve design time by
maintaining predictable timing levels and lowering clock skew.
By providing a platform array-based architecture, an easy design
flow, and NRE costs comparable to those of a gate array, the ISSP
permits fast respins of prototypes and enables products to reach
mid-range production volume levels at very reasonable costs. If
the volumes increase, ISSP designers can migrate to cell-based

1 The ISSP family includes several types of architecture. In this

paper, the architecture in Figure 2 is used as an example.

products based on the same process technology, IP, and design
flow.
The ISSP1-STD family comprises a number of versatile devices
targeted for use in high-performance broadband communication
and networking equipment, computer peripherals, instrumentation
devices, and a wide range of other applications.

Figure 2: Architecture of the ISSP.

3. PHYSICAL DESIGN METHODOLOGY
AND TOOLS FOR ISSP
In this section, we describe an algorithm used in our physical
design tools which was developed to fully exploit ISSP device
capability. Here, we focus on two key issues in the physical
design: optimization of embedded clocks and interconnect delays.

3.1 Embedded Clock Structure
Figure 3 shows an example of the embedded clock structure used
by the ISSP to design low-skew clocks in a short TAT 2. The
entire chip is divided into four regions (denoted by first-level
region) and 16 regions (denoted by second-level region) in a
hierarchical, two-level tree structure: each first-level region has
four children (second-level regions) and each second-level region
has one parent (first-level region). This structure imposes the
following design constraints:

Embedded clock constraints:

・ The chip has two main and eight local embedded clock
structures. The clocks can also be implemented by using
individual masks (user-customizable layer) without using an
embedded clock structure, which is called a non-embedded
clock structure. Each clock in a circuit implemented on the
ISSP is assigned to one of three structures: main, local, or
non-embedded. The clocks assigned to these structures are
called the main clock, local clock, and non-embedded clock,
respectively.

・ Flip-flops (F/F or register) of the main clock can be placed in
any region.

2 The ISSP family has several types of embedded clock structure.

In this paper, the structure in Figure 3 is used as an example.

M5

M3

M2

M1

M4

CCoommmmoonn
mmaasskk

CCuussttoommiizzeedd
llaayyeerr

PPoowweerr lliinneess
TTeesstt lliinneess
CClloocckk ddoommaaiinnss
MMoodduullee
 iinntteerrccoonnnneeccttiioonnss

CLK

APLL

DLL

eRAM

Embedded test circuits
- BSCAN
- Multi-SCAN

DLL

DLL DLL

APLL

APLL APLL

eRAM
eRAM
eRAM
eRAM
eRAM

eRAM
eRAM
eRAM
eRAM
eRAM

eRAM

MUX A

B
Q

“0
A

B

Q

Complex multi-gates

Sequential logic

Combinatorial logic

F/F

IInnddiivviidduuaall
mmaasskk

FPGA ISSP

Cell-based
ASIC

Total Volume 100-1K 10K-100K

Total cost = Engineering cost + Mask NRE + Total volume * Unit

FPGA

Target of ISSP Cell-based ASIC

Total Cost

91

・ Each first-level region can take four local clocks. F/Fs of
more than four local clocks cannot be placed in one first-
level region.

・ Each second-level region can take two local clocks, which
must be selected from the local clocks assigned to its parent
region. F/Fs of more than two local clocks cannot be placed
in one second-level region, and the local clock must be
selected from the local clocks assigned to its parent first-
level region. The number of clocks that one region can take
is called the clock capacity of the region. Also note that one
clock can be assigned to more than one first- or second-level
region.

・ F/Fs must be aligned on to the embedded F/F slots.
Therefore, there is an upper bound on the number of F/Fs
each first- or second- level region can take, which is called
the F/F capacity of the region.

Figure 3: Embedded clock structure.

3.2 Embedded Clock-Aware Placement
Embedded clock aware-placement for the ISSP is designed to
solve the placement problem under the embedded clock
constraints described in 3.1. This includes:

Main/local clock assignment: Determine which clock structure
(main, local, or non-embedded) is assigned to each clock in the
circuit3.

Regional clock assignment: Determine the local clocks that
each of the first- and second-level regions take.

Cell placement: Place cells including F/Fs under the constraints
of regional clock assignment determined before or during the
placement.

A simple approach to this problem is shown in Figure 4.

3 In some cases, this assignment is specified by the circuit

designer.

Method 1: “Clock assignment first” approach
Step 1. Perform main/local clock assignment and regional clock
assignment based on the number of F/F, IO positions, and
RAM positions.

Step 2. Carry out placement under the regional clock assignment
generated in Step 1.

Figure 4: Simple embedded clock-aware placement.

However, this approach does not work well because it is difficult
to predict good regional clock assignment without carrying out
the actual placement. Regional clock assignment without
considering placement sometimes results in infeasible constraints
on placement. It is therefore necessary to develop a tool to
generate a placement-friendly form of regional clock assignment.
One possible way of doing this is to analyze and perform regional
clock assignment based on actual placement results. Figure 5
shows an algorithm based on this idea.

Method 2: Placement-based embedded clock optimization
Step 1. Carry out global placement without considering
embedded clock constraints to get an initial solution.

Step 2. Perform main/local clock assignment and regional clock
assignment based on the results of the initial placement in Step
1.

Step 3. Carry out incremental placement based on the regional
clock assignment generated in Step 2 by moving F/Fs that are
in violation of the constraints into legal regions.

Step 4. Align the F/Fs on to embedded F/F slots.

Figure 5: Placement-based embedded clock optimization.

In Step 1, global placement is performed to get an initial solution;
“global” means that the placements made are not necessarily
legalized. This initial, unconstrained placement gives us
information on how the clock domains are distributed on the chip,
which is a good starting point for legal assignment of regional
clocks.
Figure 6 shows an algorithm used in Step 2 to assign the
main/local clocks and regional clocks. Hereafter, “violation”
means a violation of embedded clock constraints.

Procedure for Regional Clock Assignment
1. For (each second-level region) {
2. F/Fs of the same clock are formed into one cluster;
3. }

4. For (all combinations of main/clock assignment) {
5. All clusters are set to be movable;
6. While (violations or unplaced clusters exist) {
7. Rip-up movable clusters until all violations are

eliminated one by one in a small-cluster-first manner;

8. For (each ripped-up cluster) {
9. Move the cluster to a region that

does not cause violations;

Eight local
embedded
clock structures

8 Clocks

2Clocks

1 Clock

FF

Selector

Two main
embedded
clock structures

First-level
region (1/4)

Second-level
region (1/16)

4 Clocks

92

10. If (a legal region to move it to cannot be found) {
11. Move the cluster to the original region

and set it to be fixed;
12. }
13. }

14. If (all clusters are fixed) break;
15. }
16. }
17. Select the best combination of main/local clock assignment;
18. Assign local clocks to regions that are not saturated for

clock assignment;

Figure 6: Regional clock assignment.
The algorithm is based on a simple heuristic approach: an
iteration of ripping-up and replacing clusters causing
violations.Figure 7 shows an example of regional clock
assignment, where each rectangle represents an F/F numbered
according to the clock that it belongs to and, for simplicity, the
local clock capacity of each region is assumed to be 2. In Figure
7(a), the region R1 and R3 has violations that F/Fs of 4 and 3
local clocks are placed in one region. Figure 7(b) shows the result
of lines 1-3: F/F clustering based on the initial placement in
Figure 7(a). Figure 7 (c) shows the result of ripping-up and
replacing violating clusters. In Figure 7 (d), a local clock 3 is
added to the bottom right region (at line 18 in Figure 6).

Figure 7: Example of regional clock assignment. For
simplicity, the local clock capacity of each region is assumed
to be 2.
Since there are no that many combinations for main/local clock
assignment, all the combinations are checked and the best one, for

example, the combination that requires the least cluster movement
to eliminate violations, is selected (line 17).
Next, based on the regional clock assignment in Step 2, F/Fs are
moved to legal regions according to the embedded clock and the
F/F capacity constraints in Step 3 (Note that F/Fs are not moved
in Step 2). This is to minimize the total movement (distance) of
F/Fs under the constraints of regional clock assignment and the
F/F capacity of the region. Figure 8 shows an example of this
incremental placement. Taking the current placement results (top
left) and regional clock assignment (top right) as an input,
violation-free global placement is generated (bottom).

Figure 8: Example of incremental placement.

This problem can be solved by a minimum cost network-flow
algorithm. Figure 9 shows the network used for the incremental
placement problem, which has the following nodes and edges:

・ Source node S

・ Sink node T

・ Set of region nodes: each node corresponds to one region.

・ Set of F/F nodes: each node corresponds to one F/F.

・ Set of edges from S to each region node: capacity is equal to
the F/F capacity of the region; weight is equal to 0.

・ Set of edges from each F/F node to T: capacity is equal to
one; weight is equal to 0.

・ Set of edges from region node to F/F node whose clock is
assigned to the region: capacity is equal to one; weight is
equal to the distance from the region to the F/F.

(a) Initial placement of F/Fs.
 Number attached to F/F
 denotes the clock domain.

(b) F/F clustering based on region
 and clock. The number of each
 F/F cluster denotes the clock

(c) Moving F/F cluster under
 embedded clock constraints

(d) Local clock is added to
 non-saturated region.

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

2

2 2 2

1

1

1

2

2

3

2

3

4

4
4

3

2

2
2

4

3 3

3

3

3 3

3

4
4

3

3

3

3

3

3

4 4

4 4

4

4
4

4

4

4

R1

R3

R2

R4

1

11

2

2

4

3

4 4

3

R4 R3

R1 R2

1

1 1

2

2

4 4

4

33

R4 R3

R R2

1

1
1

2

2

4 4

4

3 3

3 (added)

R4 R3

R1 R2

 Current position of F/Fs Regional clock assignment.
The number of each F/F cluster
denotes the clock domain

R1 R2

R4 R3

1

1

1

1

1

1

1

1
1

1 1

1

1

2

2 2

1

2

3

2

4

4

2

3

3

4 4

3 3

4

4

4

4

4

4

1 1

1

1

1 1

1
1 1

4 1

4 4

4 4

4

3 3 3

3

3

3

3

3
2

2

2

2

3 3 3

Legalization of F/F placement
under regional clock constraints

+

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

2

2 2 2

1

1

1

2

2

3

2

3

4

4
4

3

2

2
2

4

3 3

3

3

3 3

3

4
4

3

3

3

3

3

3

4 4

4 4

4

4
4

4

4

4

R1

R3 R4
1

1
1

2

2

4 4

4

3 3

3 (added)

R4 R3

R1 R2 R2

93

The minimum cost flow from S to T with the amount of flow
equal to the total number of F/Fs results in the optimal
incremental placement in terms of minimization of the F/Fs
movement.

Figure 9: Network for incremental placement.

The final step in embedded clock optimization is detailed
placement, where each cell is legalized on to the embedded slot.
This is to minimize the total movement (distance) of F/Fs under
the constraints of F/F slots. Figure 10 shows an example of
detailed placement. Taking the current placement results (left) as
an input, violation-free F/F slot assignment (right) is generated.

Figure 10: Example of detailed placement.

This kind of problem can often be solved by a linear-assignment
algorithm. Figure 11 shows the linear assignment graph used for
the detailed placement problem, which has the following nodes
and edges:

・ Set of F/F nodes: each node corresponds to one F/F.

・ Set of slot nodes: each node corresponds to one slot.

・ Set of edges from F/F node to slot node which can take the
clock of F/F: weight is equal to the distance from the F/F to
the slot.

Linear assignment on the graph results in the optimal detailed
placement in terms of minimization of the F/F movement.

Figure 11: Linear assignment graph for detailed placement.

3.3 Design Methodology Enhancement Using
Flooplanner
The problem with the approach used in the previous section is that
the initial placement (Step 2 in Figure 5) may have too many
regional clock assignment violations, which can seriously degrade
the placement in Step 3 in Figure 5; numerous F/Fs have to be
moved in accordance with the embedded clock constraints and
placement becomes distorted. This has the potential to extend the
design time.
To solve this problem, it is important to consider embedded clock
constraints in the early design stages (before cell placement). For
this purpose, we developed floorplan-based embedded clock
optimization as shown in Figure 12.

Method 3: Floorplan-based embedded clock optimization
Step 1. Carry out embedded clock-aware floorplanning.
Step 2. Cary out placement-based embedded clock optimization.

Figure 12: Floorplan-based embedded clock optimization

Step 2 in Figure 12 is the same as the “placement-based
embedded clock optimization” in Figure 5. In this approach,
regional clock assignment is checked and optimized before
proceeding to the level of detailed (cell) optimization in Step 2.
This can resolve the problem of placement distortion that may
occur in Step 2 inFigure 12.
More details of embedded clock-aware floorplanning (Step. 1 in
Figure 12) are shown in Figure 13.

1

1
1

11

1
11

3

1

1

1
1

3

2

3 3

2

2

2

4

4
4

4

11 1 11

1

1

1

1

3

2

3

2

24

3 3

4

4 4 2

1

1

1

(a) Before detailed placement (b) After detailed placement

F/F2
F/F3
F/F4

Edge from F/F
to legal slots

Slot 2

Slot 3

Slot 4

F/F1

Set of F/Fs

Slot 1

：

Set of Slots

：

F/F nodes

Edge from S
 to region node

Region nodes

Source Sink

Clock 3

Clock 2

Clock 4

Clock 1

S

Edge from region
 to F/F in legal clock

T

R1

R2

R3

R4
Edge from
 F/F to T

94

Figure 13: Embedded clock-aware floorplanning

This flow is based on the idea that “regional clock assignment” in
Figure 6 can be naturally integrated into automatic circuit
partitioning [11] and floorplannning[12]. First, circuit practitioner
generates a set of clusters, where F/Fs of different clock are not
mixed in one cluster. Next, initial floorplanning for the clusters is
performed without considering embedded clock constraints,
which is used for the following regional clock constraints
generation. Then, incremental floorplanning is performed under
the regional clock constraints. This constraints generation and
floorplanning is incrementally iterated until all violations are
eliminated with gradually increasing a penalty for the violations.
Design optimization in the early stages using circuit partitioning
and floorplanning is also useful for optimizing interconnect
delays To achieve higher performance, close to that of standard
cell-based ASIC, we integrated the following performance
optimization into the embedded clock-aware floorplanning in
Figure 13, which includes RAM placement optimization.

・ Circuit partitioning that considers logical hierarchy
(absorbing timing-critical modules into one cluster) and
physical hierarchy (optimizing number of interconnects
between clusters).

・ Floorplanning with a timing optimization capability which
includes interconnect delay and timing analysis.

In order to fully exploit the capability of this new device, it is
important to consider design constraints (for timing and
embedded clock) from the early design stages by introducing this
kind of approach.

4. EXPERIMENTAL RESULTS
The proposed design environment is used in ISSP design and
more than 30 chips have already been taped out by the first-
generation ISSP. In this section, our experimental results show
how the proposed approach can optimize ISSP design.

4.1 Embedded Clock Optimization
To verify the effectiveness of our embedded clock-aware
floorplanning, we compared the following methods:

Method 2: Placement-based embedded clock optimization.
Method 3: Floorplan-based embedded clock optimization.

The circuit used for the evaluation has 200K cell and seven
embedded clocks. The total number of F/Fs is 56K and the
number of local clock F/Fs is 15K.
Table 1 shows the number of F/Fs moved at the Step 3 in Figure 5.

Table 1: Embedded clock optimization

 # F/Fs moved in incremental placement

Method 2 1821

Method 3 0

This table shows that our approach reduces the number of F/Fs
moved in incremental placement from 1821 down to 0. This
means that the quality degradation of placement can be prevented
by using our embedded clock-aware floorplanning.

4.2 Performance Optimization by Using
Floorplanner
Next, we compared a conventional placement tool for standard
cell-based ASICs (for global placement) and our specialized
placement tool for ISSP to verify the effectiveness of using
floorplanner. The circuit used for the evaluation has 380K cells
and the target frequency is 200MHz.
Table 2 shows how the performance improved by our tools.

Table 2: Performance improvement with floorplanner

 Frequency (MHz)

Cell-based ASIC tool 153

Our tool 204

This table shows that a 30% improvement in performance can be
obtained using our approach compared with using standard cell-
based tools.
Figure 14 shows an example of floorplan used for the
performance optimization.

Circuit partitioning
 considering clock domain

Floorplanning without
 considering embedded
 clock constraints

Regional clock assignment based
 on current floorplanning

Incremental floorplanning with
 embedded clock constraints

Embedded clock
constraints violations

exists

END

Y

N

95

Figure 14: An example of floorplan

These experiments show that our newly developed tools can
contribute to achieve both a short time to production and high-
performance in the ISSP design.

5. CONCLUSION AND FUTURE WORK
In this paper, we have described a design methodology and tools
for NEC Electronics’ structured ASIC, Instant Silicon Solution
Platform (ISSP), which has been developed to fill the gap
between FPGAs and standard cell-based ASICs. The ISSP has a
unique regular-fabric architecture designed to achieve both a short
time to production and high-performance LSI design. We have
introduced a special design methodology and tools developed to
fully exploit this new device capability with focusing on two key
issues in the physical design: optimization of embedded clocks
and interconnect delays.

Experimental results for industrial data show that performance
improvements of up to 30% can be obtained using our approach
compared with applying conventional standard cell-based tools,
which confirm that the newly developed tools can contribute to
both a short time to production and high-performance ISSP design.
Future work planned for the ISSP design methodology includes:

・ Developing physical synthesis tools to fully exploit the
device architecture capability.

・ Enhancing the floorplanner for RAM and logic module
placement.

・ Developing a design methodology and tools which can
efficiently handle circuit with more than 5 M gates in flat
manner.

To achieve these goals, it will be very important to ensure that the
development of device architecture and design methodology/tools
is well integrated

6. ACKNOWLEDGMENTS
The authors would like to acknowledge their many colleagues in
the ISSP project at NEC Electronics Corp. and the System CAD
technology group at NEC Corp for their efforts in developing the
ISSP devices and design methodologies and tools. The authors
introduce the design methodologies and tools for the ISSP on
behalf of the whole development team.

7. REFERENCES
[1] A. El-Gamal, I. Bolsens, A. Broom, C. Hamlin,

P.Magarshack, Z. O.-Bach, L. Pileggi, “Fast, Cheap and
Under Control: The Next Implementation Fabric,” in
Proceedings of the 35th ACM/IEEE Design Automation
Conference, pp. 354-355, 2003

[2] A. Kahng, I. Bolsens, J. Cohn, B. Gupta, C. Hamlin, Z. Or-
Bach, L. Pileggi, “What is the Next Implementation Fabric,”
IEEE Design & Test of Computers, Vol. 20, no. 6, pp. 86-95,
Nov., 2003

[3] http://www.necelam.com/asics/index.php?Subject=ISSP
[4] http://www.lsilogic.com/products/rapidchip_platform_asic/in

dex.html
[5] http://www.fma.fujitsu.com/accel/main01.asp
[6] L. Pileggi, H. Schmit, A.J. Strojwas, P. Gopalakrishnan,

V.Kheterapal, A. Koorapaty, C. Patel, V. Rovner, K. Y.
Tong, “Exploring Regular Fabrics to Optimize the
Performance-Cost Trade-Off,” in Proceeding of the 34th
ACM/IEEE Design Automation Conference, pp. 782-787,
2003

[7] C. Patel, A. Cozzie, H. Schmit, L. Pilleggi, “An
Architectural Exploration of Via Patterned Gate Arrays,” in
Proceedings of 2003 International Symposium on Physical
Design, pp. 184-189, 2003

[8] J. Cong, Y. Fan, X. Yang, Z. Zhang, “Architecture and
Synthesis for Multi-Cycle Communication,” in Proceedings
of 2003 International Symposium on Physical Design, pp.
190-196, 2003

[9] B. Hu, H. Jiang, Q. Liu, M. M.-Sadowska, “Synthesis and
Placement Flow for Gain-Based Programmable Regular
Fabrics,” in Proceedings of 2003 International Symposium
on Physical Design, pp. 197-203, 2003

[10] F. Mo, R.K. Brayton, “Fishbone: A Block-Level Placement
and Routing Scheme,” in Proceedings of 2003 International
Symposium on Physical Design, pp. 204-209, 2003

[11] Y. Ono and T. Okamoto, “A Floorplan-Oriented Method of
Circuit Partitioning,” in Proceedings of the Workshop on
Synthesis and Systems Integration of Mixed Technologies, pp.
301-307, 2001

[12] T. Okamoto and T. Yoshimura, “A New Approach to VLSI
Floorplanning based on Quadratic Programming and
Rectangle Packing,” in Proceedings of the Workshop on
Synthesis and Systems Integration of Mixed Technologies, pp.
257-263, 2001

96

	Main Page
	ISPD'04
	Front Matter
	Table of Contents
	Author Index

