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ABSTRACT 
In this paper, we describe a design methodology and tools for 
NEC Electronics’ structured ASIC, Instant Silicon Solution 
Platform (ISSP), which is being developed to fill the gap between 
FPGAs and standard cell-based ASICs. The ISSP has a unique 
regular-fabric architecture designed to achieve both a short time 
to production and high-performance LSI design. We have 
developed a special design methodology and tools to fully exploit 
the capability of this new device. Experimental results for 
industrial data show that our approach has advantages for ISSP 
design. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aides 

General Terms 
Design, Performance, Algorithm 

Keywords 
Structured ASIC, Regular fabric, ISSP, Placement. 

1. INTRODUCTION 
While the design productivity gap resulting from the latest 
advances in deep-submicron process technology has been much 
discussed, another gap has received much less attention until 
recently – the gap between standard cell-based ASICs and FPGAs. 
This gap presents a problem, particularly for mid-volume designs, 
which often require ASIC performance and density that meet 
product specifications and cost goals but may also need FPGA 
time to production to achieve market goals. Bridging this gap 
requires not only a new ASIC architecture, but also optimized 
design methodology [1][2]. 
Design times for complex ASICs are increasing due to the need to 
insert and verify designs for test (DFT) circuitry, and address 
deep sub-micron design issues such as signal integrity. Even in 
the FPGA world, it is not unusual to spend weeks on converging 

timing, especially for highly utilized, large gate-count designs 
with clock speeds exceeding 100 MHz. The rising costs of 
development and non-recurring engineering (NRE) of the masks 
needed to design deep sub-micron ASICs make it difficult for 
designers of systems with mid-range production volumes to target 
multiple respins of their prototypes. For early-stage products, 
there are also risks in trying to predict the production volumes 
needed to amortize these development costs. A large percentage 
of today’s designs are mid-volume, i.e., between several hundreds 
and 100,000 units are produced. In this range, designers must 
carefully balance performance, time to market, and total cost. 
Recently, several structured ASICs or regular fabrics have been 
proposed by industries [3][4][5] and university researchers 
[6][7][8][9][10] to cope with this situation. Typically, these 
devices consist of an array of logic cells built using diffusion and 
a few metal layers. Each of the logic cells contains customizable 
combinatorial logic and may also contain register elements. The 
mask layers required to build the logic-cell array are common to 
all customer designs. The logic cells are then customized and 
interconnected using a few metal layers on top that are generated 
using custom masks for a given design. This approach minimizes 
the number of custom masks needed to build an ASIC, thereby 
reducing the upfront NRE costs, while preserving the advantages 
of low unit costs, low power consumption, and the high 
performance of a standard cell-based ASIC. 
In terms of the design methodology and tools, many of the deep 
submicron issues can be directly resolved in the construction of 
the regular fabric with built-in clocks, scan chains, power 
distribution, and so on. In addition, testing is greatly simplified. In 
certain design phases, however, to extract the maximum 
performance from a device requires design methodology and tools 
specially developed for the specific device. Regular fabrics 
impose some constraints on design, which puts stress on different 
aspects of the design process. In some cases, for example, 
mapping and placement is becoming harder while routing may be 
getting easier. 
In this paper, we describe a design methodology and tools for 
NEC Electronics’ structured ASIC, Instant Silicon Solution 
Platform (ISSP), which has been developed to fill the gap 
between FPGAs and standard cell-based ASICs [3]. ISSP has a 
unique regular-fabric architecture aimed at achieving both a short 
time to production and high-performance LSI design. We have 
developed a special design methodology and tools to fully exploit 
this new device capability. Experimental results for industrial data 
show that our approach has advantages for ISSP design. 
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2. INSTANT SILICON SOLUTION 
PLATFORM (ISSP) 
The Instant Silicon Solution Platform (ISSP) is a new class of 
device based on a cost-effective, high-function, easy-to-design 
ASIC architecture ideal for designs requiring high-speed system 
clocks and mid-range production volumes [3]. Figure 1 shows the 
relationship between total volume and total cost (engineering cost 
+ mask NRE + total volume ×unit cost). The ISSP is targeted at 
the area between FPGAs and cell-based ASICs, i.e., mid-volume 
between several hundreds and 100K units. 
 

 
Figure 1: Total volume vs. total cost. 

 
Figure 2 shows the architecture of a device in the first-generation 
ISSP1-STD family (CMOS 0.15 µm technology)1, which has the 
following functions embedded in a common mask (implemented 
using three metal-layers): 

・ Clock structure 

・ SRAM 

・ Analog phase-locked loops (APLLs) 

・ Delay-locked loops (DLLs). 

・ Complex multi-gate (CMG: multiplexer and flip-flop) array 
User-logic is implemented by two individual metal layers on top 
that are generated using custom masks for a given design. 
Users designing with ISSP need not worry about the impact that 
adding DFT might have on design time because ISSP is 
preconfigured with testing methodologies such as SCAN, BSCAN, 
and others. Built-in clock domains also conserve design time by 
maintaining predictable timing levels and lowering clock skew. 
By providing a platform array-based architecture, an easy design 
flow, and NRE costs comparable to those of a gate array, the ISSP 
permits fast respins of prototypes and enables products to reach 
mid-range production volume levels at very reasonable costs. If 
the volumes increase, ISSP designers can migrate to cell-based 

                                                                 
1 The ISSP family includes several types of architecture. In this 

paper, the architecture in Figure 2 is used as an example. 

products based on the same process technology, IP, and design 
flow. 
The ISSP1-STD family comprises a number of versatile devices 
targeted for use in high-performance broadband communication 
and networking equipment, computer peripherals, instrumentation 
devices, and a wide range of other applications. 

 

 
Figure 2: Architecture of the ISSP. 

 

3. PHYSICAL DESIGN METHODOLOGY 
AND TOOLS FOR ISSP 
In this section, we describe an algorithm used in our physical 
design tools which was developed to fully exploit ISSP device 
capability. Here, we focus on two key issues in the physical 
design: optimization of embedded clocks and interconnect delays. 

3.1 Embedded Clock Structure 
Figure 3 shows an example of the embedded clock structure used 
by the ISSP to design low-skew clocks in a short TAT 2. The 
entire chip is divided into four regions (denoted by first-level 
region) and 16 regions (denoted by second-level region) in a 
hierarchical, two-level tree structure: each first-level region has 
four children (second-level regions) and each second-level region 
has one parent (first-level region). This structure imposes the 
following design constraints: 

Embedded clock constraints: 

・ The chip has two main and eight local embedded clock 
structures. The clocks can also be implemented by using 
individual masks (user-customizable layer) without using an 
embedded clock structure, which is called a non-embedded 
clock structure. Each clock in a circuit implemented on the 
ISSP is assigned to one of three structures: main, local, or 
non-embedded. The clocks assigned to these structures are 
called the main clock, local clock, and non-embedded clock, 
respectively. 

・ Flip-flops (F/F or register) of the main clock can be placed in 
any region. 

                                                                 
2 The ISSP family has several types of embedded clock structure. 

In this paper, the structure in Figure 3 is used as an example. 
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・ Each first-level region can take four local clocks. F/Fs of 
more than four local clocks cannot be placed in one first-
level region. 

・ Each second-level region can take two local clocks, which 
must be selected from the local clocks assigned to its parent 
region. F/Fs of more than two local clocks cannot be placed 
in one second-level region, and the local clock must be 
selected from the local clocks assigned to its parent first-
level region. The number of clocks that one region can take 
is called the clock capacity of the region. Also note that one 
clock can be assigned to more than one first- or second-level 
region. 

・ F/Fs must be aligned on to the embedded F/F slots. 
Therefore, there is an upper bound on the number of F/Fs 
each first- or second- level region can take, which is called 
the F/F capacity of the region. 

 

 
Figure 3: Embedded clock structure. 

 

3.2 Embedded Clock-Aware Placement 
Embedded clock aware-placement for the ISSP is designed to 
solve the placement problem under the embedded clock 
constraints described in 3.1. This includes: 

Main/local clock assignment: Determine which clock structure 
(main, local, or non-embedded) is assigned to each clock in the 
circuit3. 

Regional clock assignment: Determine the local clocks that 
each of the first- and second-level regions take.  

Cell placement: Place cells including F/Fs under the constraints 
of regional clock assignment determined before or during the 
placement. 

A simple approach to this problem is shown in Figure 4. 
 
 
                                                                 
3  In some cases, this assignment is specified by the circuit 

designer. 

Method 1: “Clock assignment first” approach 
Step 1. Perform main/local clock assignment and regional clock 
assignment based on the number of F/F, IO positions, and 
RAM positions. 

Step 2. Carry out placement under the regional clock assignment 
generated in Step 1. 

Figure 4: Simple embedded clock-aware placement. 
 
However, this approach does not work well because it is difficult 
to predict good regional clock assignment without carrying out 
the actual placement. Regional clock assignment without 
considering placement sometimes results in infeasible constraints 
on placement. It is therefore necessary to develop a tool to 
generate a placement-friendly form of regional clock assignment. 
One possible way of doing this is to analyze and perform regional 
clock assignment based on actual placement results. Figure 5 
shows an algorithm based on this idea. 

Method 2: Placement-based embedded clock optimization 
Step 1. Carry out global placement without considering 
embedded clock constraints to get an initial solution. 

Step 2. Perform main/local clock assignment and regional clock 
assignment based on the results of the initial placement in Step 
1. 

Step 3. Carry out incremental placement based on the regional 
clock assignment generated in Step 2 by moving F/Fs that are 
in violation of the constraints into legal regions. 

Step 4. Align the F/Fs on to embedded F/F slots. 

Figure 5: Placement-based embedded clock optimization. 
 
In Step 1, global placement is performed to get an initial solution; 
“global” means that the placements made are not necessarily 
legalized. This initial, unconstrained placement gives us 
information on how the clock domains are distributed on the chip, 
which is a good starting point for legal assignment of regional 
clocks. 
Figure 6 shows an algorithm used in Step 2 to assign the 
main/local clocks and regional clocks. Hereafter, “violation” 
means a violation of embedded clock constraints. 

Procedure for Regional Clock Assignment 
1. For (each second-level region) { 
2.    F/Fs of the same clock are formed into one cluster; 
3. } 

4. For (all combinations of main/clock assignment) { 
5.    All clusters are set to be movable; 
6.    While (violations or unplaced clusters exist) { 
7.       Rip-up movable clusters until all violations are  

eliminated one by one in a small-cluster-first manner; 

8.       For (each ripped-up cluster) { 
9.          Move the cluster to a region that 

does not cause violations; 
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10.          If (a legal region to move it to cannot be found) { 
11.             Move the cluster to the original region 

and set it to be fixed; 
12.          } 
13.       } 

14.       If (all clusters are fixed) break; 
15.    } 
16. } 
17. Select the best combination of main/local clock assignment; 
18. Assign local clocks to regions that are not saturated for 

clock assignment; 

Figure 6: Regional clock assignment. 
The algorithm is based on a simple heuristic approach: an 
iteration of ripping-up and replacing clusters causing 
violations.Figure 7 shows an example of regional clock 
assignment, where each rectangle represents an F/F numbered 
according to the clock that it belongs to and, for simplicity, the 
local clock capacity of each region is assumed to be 2. In Figure 
7(a), the region R1 and R3 has violations that F/Fs of 4 and 3 
local clocks are placed in one region. Figure 7(b) shows the result 
of lines 1-3: F/F clustering based on the initial placement in 
Figure 7(a). Figure 7 (c) shows the result of ripping-up and 
replacing violating clusters. In Figure 7 (d), a local clock 3 is 
added to the bottom right region (at line 18 in Figure 6). 

 
Figure 7: Example of regional clock assignment. For 
simplicity, the local clock capacity of each region is assumed 
to be 2. 
Since there are no that many combinations for main/local clock 
assignment, all the combinations are checked and the best one, for 

example, the combination that requires the least cluster movement 
to eliminate violations, is selected (line 17).  
Next, based on the regional clock assignment in Step 2, F/Fs are 
moved to legal regions according to the embedded clock and the 
F/F capacity constraints in Step 3 (Note that F/Fs are not moved 
in Step 2). This is to minimize the total movement (distance) of 
F/Fs under the constraints of regional clock assignment and the 
F/F capacity of the region. Figure 8 shows an example of this 
incremental placement. Taking the current placement results (top 
left) and regional clock assignment (top right) as an input, 
violation-free global placement is generated (bottom). 
 

 
Figure 8: Example of incremental placement. 

 
This problem can be solved by a minimum cost network-flow 
algorithm. Figure 9 shows the network used for the incremental 
placement problem, which has the following nodes and edges: 

・ Source node S 

・ Sink node T 

・ Set of region nodes: each node corresponds to one region. 

・ Set of F/F nodes: each node corresponds to one F/F. 

・ Set of edges from S to each region node: capacity is equal to 
the F/F capacity of the region; weight is equal to 0. 

・ Set of edges from each F/F node to T: capacity is equal to 
one; weight is equal to 0. 

・ Set of edges from region node to F/F node whose clock is 
assigned to the region: capacity is equal to one; weight is 
equal to the distance from the region to the F/F. 

(a) Initial placement of F/Fs. 
  Number attached to F/F 
  denotes the clock domain. 

(b) F/F clustering based on region 
  and clock. The number of each 
  F/F cluster denotes the clock 

(c) Moving F/F cluster under  
   embedded clock constraints 

(d) Local clock is added to 
   non-saturated region. 
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The minimum cost flow from S to T with the amount of flow 
equal to the total number of F/Fs results in the optimal 
incremental placement in terms of minimization of the F/Fs 
movement. 

 
 

Figure 9: Network for incremental placement.  
 
The final step in embedded clock optimization is detailed 
placement, where each cell is legalized on to the embedded slot. 
This is to minimize the total movement (distance) of F/Fs under 
the constraints of F/F slots. Figure 10 shows an example of 
detailed placement. Taking the current placement results (left) as 
an input, violation-free F/F slot assignment (right) is generated. 
 

 
Figure 10: Example of detailed placement. 

 
This kind of problem can often be solved by a linear-assignment 
algorithm. Figure 11 shows the linear assignment graph used for 
the detailed placement problem, which has the following nodes 
and edges: 

・ Set of F/F nodes: each node corresponds to one F/F. 

・ Set of slot nodes: each node corresponds to one slot. 

・ Set of edges from F/F node to slot node which can take the 
clock of F/F: weight is equal to the distance from the F/F to 
the slot. 

Linear assignment on the graph results in the optimal detailed 
placement in terms of minimization of the F/F movement. 

 

 
Figure 11: Linear assignment graph for detailed placement. 

 

3.3 Design Methodology Enhancement Using 
Flooplanner 
The problem with the approach used in the previous section is that 
the initial placement (Step 2 in Figure 5) may have too many 
regional clock assignment violations, which can seriously degrade 
the placement in Step 3 in Figure 5; numerous F/Fs have to be 
moved in accordance with the embedded clock constraints and 
placement becomes distorted. This has the potential to extend the 
design time. 
To solve this problem, it is important to consider embedded clock 
constraints in the early design stages (before cell placement). For 
this purpose, we developed floorplan-based embedded clock 
optimization as shown in Figure 12. 
 

Method 3:  Floorplan-based embedded clock optimization 
Step 1. Carry out embedded clock-aware floorplanning. 
Step 2. Cary out placement-based embedded clock optimization. 

Figure 12: Floorplan-based embedded clock optimization 
 
Step 2 in Figure 12 is the same as the “placement-based 
embedded clock optimization” in Figure 5. In this approach, 
regional clock assignment is checked and optimized before 
proceeding to the level of detailed (cell) optimization in Step 2. 
This can resolve the problem of placement distortion that may 
occur in Step 2 inFigure 12. 
More details of embedded clock-aware floorplanning (Step. 1 in 
Figure 12) are shown in Figure 13. 
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Figure 13: Embedded clock-aware floorplanning 

 
This flow is based on the idea that “regional clock assignment” in 
Figure 6 can be naturally integrated into automatic circuit 
partitioning [11] and floorplannning[12]. First, circuit practitioner 
generates a set of clusters, where F/Fs of different clock are not 
mixed in one cluster. Next, initial floorplanning for the clusters is 
performed without considering embedded clock constraints, 
which is used for the following regional clock constraints 
generation. Then, incremental floorplanning is performed under 
the regional clock constraints. This constraints generation and 
floorplanning is incrementally iterated until all violations are 
eliminated with gradually increasing a penalty for the violations. 
Design optimization in the early stages using circuit partitioning 
and floorplanning is also useful for optimizing interconnect 
delays To achieve higher performance, close to that of standard 
cell-based ASIC, we integrated the following performance 
optimization into the embedded clock-aware floorplanning in 
Figure 13, which includes RAM placement optimization. 

・ Circuit partitioning that considers logical hierarchy 
(absorbing timing-critical modules into one cluster) and 
physical hierarchy (optimizing number of interconnects 
between clusters). 

・ Floorplanning with a timing optimization capability which 
includes interconnect delay and timing analysis. 

In order to fully exploit the capability of this new device, it is 
important to consider design constraints (for timing and 
embedded clock) from the early design stages by introducing this 
kind of approach. 

4. EXPERIMENTAL RESULTS 
The proposed design environment is used in ISSP design and 
more than 30 chips have already been taped out by the first-
generation ISSP. In this section, our experimental results show 
how the proposed approach can optimize ISSP design. 

4.1 Embedded Clock Optimization 
To verify the effectiveness of our embedded clock-aware 
floorplanning, we compared the following methods: 

Method 2: Placement-based embedded clock optimization. 
Method 3: Floorplan-based embedded clock optimization. 

The circuit used for the evaluation has 200K cell and seven 
embedded clocks. The total number of F/Fs is 56K and the 
number of local clock F/Fs is 15K. 
Table 1 shows the number of F/Fs moved at the Step 3 in Figure 5.  
 

Table 1: Embedded clock optimization 

 # F/Fs moved in incremental placement 

Method 2 1821 

Method 3 0 

 
This table shows that our approach reduces the number of F/Fs 
moved in incremental placement from 1821 down to 0. This 
means that the quality degradation of placement can be prevented 
by using our embedded clock-aware floorplanning. 

4.2 Performance Optimization by Using 
Floorplanner 
Next, we compared a conventional placement tool for standard 
cell-based ASICs (for global placement) and our specialized 
placement tool for ISSP to verify the effectiveness of using 
floorplanner. The circuit used for the evaluation has 380K cells 
and the target frequency is 200MHz. 
Table 2 shows how the performance improved by our tools. 

 

Table 2: Performance improvement with floorplanner 

 Frequency (MHz) 

Cell-based ASIC tool 153 

Our tool 204 

 
This table shows that a 30% improvement in performance can be 
obtained using our approach compared with using standard cell-
based tools. 
Figure 14 shows an example of floorplan used for the 
performance optimization. 
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Figure 14: An example of floorplan 

 
These experiments show that our newly developed tools can 
contribute to achieve both a short time to production and high-
performance in the ISSP design. 
 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have described a design methodology and tools 
for NEC Electronics’ structured ASIC, Instant Silicon Solution 
Platform (ISSP), which has been developed to fill the gap 
between FPGAs and standard cell-based ASICs. The ISSP has a 
unique regular-fabric architecture designed to achieve both a short 
time to production and high-performance LSI design. We have 
introduced a special design methodology and tools developed to 
fully exploit this new device capability with focusing on two key 
issues in the physical design: optimization of embedded clocks 
and interconnect delays. 

Experimental results for industrial data show that performance 
improvements of up to 30% can be obtained using our approach 
compared with applying conventional standard cell-based tools, 
which confirm that the newly developed tools can contribute to 
both a short time to production and high-performance ISSP design. 
Future work planned for the ISSP design methodology includes: 

・ Developing physical synthesis tools to fully exploit the 
device architecture capability. 

・ Enhancing the floorplanner for RAM and logic module 
placement. 

・ Developing a design methodology and tools which can 
efficiently handle circuit with more than 5 M gates in flat 
manner. 

To achieve these goals, it will be very important to ensure that the 
development of device architecture and design methodology/tools 
is well integrated 
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