
 Hardware Design Guidelines

Rajesh Bawankule (rajesh52@hotmail.com)

Coding Style Guidelines.

Design For Test Guidelines.

Design for Synthesis Guidelines.

Design Verification Guidelines.

Coding Style Guidelines

Editor Guidelines

§ A single line should not contain more than 80 characters.
§ Avoid tabs, since they will not indent the same in all editors. If you must use

tabs, re-format your source before checking it in using `expand -4' on Unix.
§ Use 4 hard spaces for indentation.

 Source and Revision Control:

§ Use a source control header at the top of all source files (i.e. verilog source,

synthesis scripts, makefiles, include files, run scripts).
§ Keep all these files under revision/version control.
§ At every check-in add comments which state the purpose for the change(s).

 Hierarchy Guidelines.

 Each ASIC / FPGA should have a top level module, a pad module and a core
module

§ the top level module should be named <ASIC>.v
§ the pad module should be named <ASIC>_pad.v
§ the core module should be named <ASIC>_core.v

 where <ASIC> is the top level name of your ASIC / FPGA.

 This describes the directory hierarchy standards we want the designers to follow in
order to ease system integration/FPGA-ASIC conversion.

 Module and File Naming Conventions:

§ Write only one module per file.
§ The filename should be <module_name>.v
§ The top level module names need to be ALL CAPS.
§ A bus functional model should have name <model_bfm.v>. The module

name should be the same as the model to be replaced.

 example: The bus model of the pentium processor should be called
pentium_bfm.v

§ Verilog control files use .vc suffix.
§ Synchronizer module names should use "sync_" prefix.

 Module Organization

§ Suggested order for parts of a module. This should ease debugging. Port

names should be one per line to ease automatic parsing.

 o Module header (includes copyright, RCS information, description,
 modification history)
 o Input ports, place clocks at the beginning.
 o Output ports
 o InOut ports
 o Declaration of internal signals
 o Local parameters, including state parameters (state parameters can
 also be placed just before the state machine)
 o Continuous assignment statements
 o Control/Next state logic (use function or always blocks)
 o Control/State registers

§ Short description of requirements / specifications / IO description should be

provided inside the module.
§ Simple timing diagrams should be provided wherever possible.

 Parameters and `defines:

§ Avoid using long explicit path identifiers.
§ Place all system or chip-wide macros (`define statements) and parameters in an

include file named <chip>.h or <system>.h.

 Inter-module Connections

§ Always use explicit signal names for inter-module connections. DO NOT use

positional or implied association. For example: Use
 ModA modA_inst (.sys_clk(clock), .in1(start),...);

§ Do not concatenate pin lists to vectors in instantiations:

 Don't: modA modA_inst(.bus({ad[0], ad[2], ad[4]}), ...);
 Do: assign evenadd = {ad[0], ad[2], ad[4]};
 modA modA_inst(.bus(evenadd), ...);

 Signal Naming Conventions:

§ Always maintain clock signal names across levels of hierarchy.
§ Whenever possible, maintain non-clock signal names the same at all levels of

hierarchy.
§ Top-level pin signal names must not be vectored (i.e. use

BUS_0,BUS_1...,not BUS[0:n]).
§ Top-level pin signal names need to be ALL CAPS.
§ Top-level pin signal names should contain suffix _I, _O, or _BI to indicate

direction of pins.
§ Do not use "_" as a prefix or suffix. This may cause problems when going

through vendor-specific tools.
§ Use "_" between words in a signal name.
 example: byte_sel, addr_bus_en
§ Use ''_'' and not capital letters to separate items in a port name :
 example: my_clever_bus instead of myCleverBus.
§ Signal names should be case insensitive.
 example : Do not use mybus and MyBus to designate 2 different object.
§ Use underscores to separate bit numbers from port name .
 example: my_bus_12 instead of my_bus12.
§ Use "_L" or "_l" for active-low signals.
 example: byte_sel_l, addr_bus_en_l
§ Use common suffixes (_en, _set, _rst, _rdy, etc.) for control signals like
 enable, set, reset, ready, etc.
§ Use "_clk" suffix for flip flop clocks. This will aid in finding these clocks for

test purposes.
§ If using latches, use "_g" suffix for latch clocks.
§ When synchronizing asynchronous signals, use "u_" prefix on the

unsynchronized signal.
§ Use ALL CAPS for parameter's and `defines.
§ Be consistent when you use abbreviations. The following show the preferred

Abbreviations

 preferred instead of meaning
 DATA DA Data Bus
 ADDR ADD, AD Address Bus
 CLK CLOCK,CK,CLOK, KLOK All top level clocks
 RESET RST reset
 VALID VLD valid pin
 State Machines

§ Use parameter declarations for the value of all states.
§ Meaningful state names should be used in parameter declarations instead of s0,

s1, s2.
§ State variable names should have an "_st" suffix.
§ Place "nx" prefix on all next state variable names.
§ Every state should preferably have a small description section in the beginning

to indicate the action in that state.

 Design For Test Guidelines

 Clock Issues

§ Use negative edge clocks and flip-flops only where absolutely necessary (e.g.

on the write enable of SRAMs).
§ Do not use a clock in the data path to a flip flop which it controls.
§ Drive clocks directly from primary input pins whenever possible.
§ For internally generated clock signals, the clock generation flip-flops must not

be in the scan path, and there must be a path making the clock controllable
from primary inputs.

§ Generally each clock domain will require a separate scan chain. It is possible,
but not preferable, to make a single chain from multiple clock domains.

§ Internally-generated clocks need to be controllable from primary inputs.
§ All frequency dividers must be resetable from primary inputs.
§ In multi-clock designs, each module consists of a single clock, except

synchronizer and clock generator modules.

 Latches

§ Use latches only when absolutely necessary.
§ Watch for feedback loops involving latches that may exist outside of functional

operation.
§ Latches will require special logic to enable the gate pin during test.

 Set and Reset

§ Do not internally generate asynchronous set/reset. If you use asynchronous
set/reset, these must come from a primary input.

§ If you bring an asynchronous set/reset line in, and you must synchronize it
before sending it to some flip-flops, then include the synchronized set/reset in
your data path to the flip flop, do not use it to drive asynchronous set/reset
lines.

 RAMs

§ Use BIST. It requires a lot of gates, but can be very effective.
§ Multiplex all RAM I/O signals to primary I/O's. This introduces a delay in all

RAM signal timing, but allows very good control of the RAM for further
testing and diagnostic purposes.

 Internal Tristates

§ If at all possible, avoid internal tristate busses.
§ Use either busholders or pull-up resistors on all internal tristate buses.
§ All internal tristate buffers must be disabled by the test enable (TE) pin to

avoid bus contention during scan.
§ Fully decode tristate enables to only allow one driver at a time.

 Pin Requirements

§ The following pins are required for boundary scan:
 o TDI, TCK, TMS, TDO, TRST_L
§ The following pins are required for internal scan, for each scan chain:
 o SCAN_IN, SCAN_OUT, TE
§ It is possible to multiplex scan data pins with normal primary inputs, or with

BSCAN pins, if pin count is extremely tight.

 Combinational Feedback

§ Combinational feedback is strictly forbidden

 Bidirectional I/Os

§ Disable all bidirectional I/O's with the TRST_L pin.

 Flip-flops

§ Use only flip-flops with scannable equivalents.
§ Synthesize with timing margins to ease replacement of non-scan with scan flip-

flops.

 Design for Synthesis Guidelines

 Latch Inference

§ Reset should be used in all synchronous blocks to drive all output signals.
§ "case" statements should be used instead of "if-else" for proper mux

instantiation. Every case statement should have all the inputs in the sensitivity
list that are driving the output in the case block.

§ Avoid latches and use registers instead. Registers are more testable.

Tristate Buses

§ Do not use internal tristate buses. Tristate logic should be used only for IOs of
the top level design. Divide the top level design into two parts. top_core .
top_with_pads

 top_core contains all the logic and sub-modules. Its IOs are either inputs or
outputs, not inout. For tristate signals say data[31:0] you should have a
data_out[31:0], data_in[31:0] and data_out_oe. top_with_pads instantiates
top_core and the IO pad cells.

§ Implement the shared bus using a mux.
§ Do not mix hierarchical logic and behavioral logic. Top level design should be

all pure hierarchial, leaf modules will be behavioral. Intermediate modules
should either be pure hierarchial or pure behavioral.

§ Limit the hierarchy to a maximum of 5 levels; 3 levels however, are the
preferred number.

 Synchronous Logic

§ Design synchronous logic instead of asynchronous logic. If there is

asynchronous logic then there should be clear justification for it.
§ Each module should have only one clock.
§ Synchronize the asynchronous input using dual flip-flop logic or synchronizers

from the target library.
§ If the signal crosses one clock domain to another, the signals should be

synchronized.

 Finite State Machines

§ Keep the state machines in separate files and do not mix any other logic within

the state machine module.

 Multiple Drivers

§ A signal in a module should be driven by a single process/always statement.

Multiple drivers are not allowed.

 Design Verification Guidelines

 Code Coverage

§ Plan your tests to cover all features of design.

 Node Coverage

§ Plan and write your tests to toggle all input pins with different combinations.

For example tests should exercise at least apply all zeros, all ones and alternate
zero and ones to an address input.

§ Tests should toggle all output nodes. Use Comit’s node coverage tool to check

this requirement.

 Pattern Generation

§ Write tests to generate exhaustive patterns in the debugging stage. Modify

your tests to generate random patterns for stable environment testing.

Ease of debugging

 * Avoid conditions derived from multiple input conditions. For example, avoid

 if(condition_1 & condition_2 & condition_3 & condition_4 &
signal_1 &
 signal_2 & signal_3 & signal_4)
 if(condition_1 & condition_2 & condition_3 & condition_4 |
 signal_1)....

 Use
 assign mode_1 = (condition_1 & condition_2 & condition_3 &
condition_4);
 assign mode_2 = (signal_1 & signal_2 & signal_3 & signal_4);
 if (mode_1 & mode_2)
 if (mode_1 | signal_1)

This page is created and maintained by Rajesh Bawankule
(rajesh52@hotmail.com) (Last Modified 12/13/98)

