
Verifying functionality is simply not enough
Rajesh Bawankule
Sr. Research Engineer

Nokia-Siemens Networks
380 N Bernardo Av.

Mountain View, CA 94043

Rajesh.Bawankule@nsn.com

ABSTRACT

SoC designers increasingly incorporate a significant amount of

IPs from third-party IP vendors. IP providers verify their IPs

thoroughly from a functionality point of view but they often lack

the understanding (and rightfully so) of a bigger picture in which

their IPs may be used. Many IP providers also provide

Verification IP (VIP) along with their design or implementation

IPs to assist and speed up the verification process. Generally this

process minimizes functional bugs as the vendor has spent

considerable time and energy on finding and fixing functional

issues. However, issues related to target throughput and how an IP

will behave in a system context are more difficult to find.

In this paper, we describe our experience in creating test benches

which quantify IP throughput to find out functional issues which

cause throughput drops.

The key takeaway

The observation of throughput, latency, and flow control of an IP

subsystem can reveal issues with the IP as well as the surrounding

design which uses that IP.

Keywords

I.P., throughput, verification, functionality, specifications, latency,

flow control.

1. Introduction
As a part of the Nokia-Siemens Networks’s research group, we

evaluate various IPs routinely. Evaluating them quickly and

efficiently is the key. In one such project, we created a test

infrastructure to validate the functionality and throughput of a

new memory subsystem for networking gear 100G and beyond.

This paper shows various lessons learned during that process. We

also include code snippets and scripts that can be used by the

readers for their projects.

The discussion is divided into 3 parts.

a. Throughput

b. Latency

c. Flow Control

2. Throughput
Throughput is how fast the IPs can execute certain functions in

the real world. For example, a memory vendor may specify

throughput in terms of bandwidth of 10GBytes of write data and

10GBytes of read data with 90% of utilization.

It was assumed that this memory will provide a simple

SRAM-like interface to offer drop-in replacements for an existing

design’s memory interfaces. Like SRAM, it will provide

simultaneously read and write into a flat address space.

The picture below shows the high level view of a test

mechanism. The testing was done on RTL and netlist as well as

on silicon at a later stage.

Figure 1: Test setup

2.1 Verifying functionality
In the first phase of verification, a set of assertions and data

checkers were created to verify the basic functionality of memory

subsystem IP. This was expected to pass easily, and no issues

were discovered as the vendor had also completed similar testing

in great detail.

2.2 Verifying Throughput
From past experience we have learned to take vendor claims of

throughput with a grain of salt. We decided to create an

exhaustive testing mechanism to verify throughput as it is difficult

to design an IP subsystem to meet every customer’s requirements.

In the second phase, a mechanism was created to measure

- instantaneous throughput

- latency for each transaction

- flow control / push back

In addition, these metrics are displayed graphically as the

simulation was progressing.

mailto:Rajesh.Bawankule@nsn.com

2.3 Observations
The following graph shows the throughput of the memory

subsystem under various usage patterns. The graph shows the

normalized throughput when the usage patterns are changed over

a period of time.

Figure 2: Throughput of memory under various usage

patterns

A pattern or combination of patterns was discovered after long

simulations which brought throughput down to 50%. The first

usage pattern “A” corresponds to the ideal conditions or

parameters. The second pattern “B” corresponds to what we

believe to be a commonly used pattern. This pattern resulted in

85% of the published bandwidth. The last pattern “D” drives

down memory bandwidth to 50% of published numbers. This was

a cause for concern.

In our experiment the usage patterns are created by merely

changing the 32 address bits, and thus the addressing pattern.

According to the specification, the IP vendor claimed that address

bits can be used in flat fashion and there is no need to know their

internal banking architecture.

In reality, the memory IP used a group of address bits for

addressing various banks. Changing these bits rapidly or using

these bits as lower address bits created internal bank conflicts and

a bottleneck in the memory controller design.

2.4 Problems in the future avoided

Imagine if this drop in memory throughput went unnoticed. If the

system around memory subsystem was unaware of this limitation

and created transactions which fall under this pattern then it could

have created an overall low performing system that would have

been very difficult and time consuming to debug. This issue/bug

within memory IP was not obvious by looking at the

specifications.

3. Latency
The second important objective is to verify latency. Low

latency is a key factor in most next generation networking gears.

To achieve low latency it is imperative to use all IPs and

especially interface IPs with the lowest possible latency.

We used the test setup and probing mechanism similar to

what we used earlier to test throughput. The test mechanism is

shown again.

Figure 3: Test setup for Latency measurement

The read latency is the time difference between the time

when a read operation is submitted to Memory Controller and the

time when data is received. The latency numbers obtained for

multiple read operations on one port at random times are shown

below. The expected latency was 30nS.

Figure 4: Graph showing observed latency issue

Further investigation revealed that the TDM architecture of

memory controller was the cause. The latency increased based on

the clock edge on which read request was launched.

4. Flow control
In almost all hardware designs, flow control / back pressure is one

of the least tested functions. If it remains untested, it can lower the

desired performance and even cause system lock ups. We created

a mechanism to observe flow control signals visually to provide

feedback of when and where things are going wrong.

The graph for flow control is obtained using the techniques

similar to throughput calculations. The duty cycle of a signal used

for back pressure can be used for displaying flow control.

Many times flow control / back pressure are tied to other issues

like latency and throughput. The following diagram shows flow

control observed along with latency numbers. This test uses the

extended version of the test case used for latency observation. The

test case was modified to hit the corner case repeatedly.

Figure 5 : Graph showing latency along with flow control

5. How it was done

A block diagram of overall reporting mechanism is shown in

Figure 6. The graphical reporting mechanism was created using a

two step approach.

1. Run the test bench which had a reporting and scaling

mechanism. It created a smooth throughput number

from instantaneous bandwidth measured every clock.

2. A gnuplot script is run to display data in .csv file

graphically.

The details of each block are given below.

Figure 6: Block diagram of reporting mechanism

5.1 Instantaneous Data Calculator
In the example above the DUT is operating at 200MHz and input

data width is 512 bits. DUT can receive and send a theoretical

maximum of 102.4 GBits. The input data bus is observed on every

clock and an instantaneous number of bits is saved into a FIFO. A

simple example is shown below. The code can be modified to take

care of multiple queues as well as control signals like byte_enable

which may indicate that only a part of 512 bits as valid.

// In FIFO

always @(posedge clk or posedge sys_rst) begin

 if (sys_rst) begin

 for(k0=0;k0<2000;k0=k0+1)

 in_fifo_0[k0] <= 'h0;

 else begin

 if(config_done) begin

 // Shift the data to next higher location

 for(k0=1999;k0>0;k0=k0-1)

 in_fifo_0[k0] <= in_fifo_0[k0 - 1];

 // Write data amount on 0th location

 if(Valid_In) begin

 if(InQNum == 0) in_fifo_0[0] <= 'd512;

 end

 end

 else

 in_fifo_0[0] <= 'd0;

 end // else: !if(sys_rst)

end // always @ (posedge clk or posedge sys_rst)

The config_done or other signals can be used to selectively write

to the csv file to make graph compact and easy to read.

5.2 Data Average Calculator
This block adds all the instantaneous data values stored in FIFO

every 100 clocks and prints it out to a csv file. This file will be

loaded in gnuplot to plot the chart.

It is essential to understand the averaging process as it affects the

resolution as well as smoothness of the graph. In the following

example the FIFO collects a maximum of 512 bits every clock for

2000 clocks.

integer handle_q0;

initial handle_q0 = $fopen("In_q0.csv");

reg [34:0] in_temp_0;

reg [35:0] in_rate_0,

always @(posedge clk or posedge sys_rst) begin

 if (sys_rst)

 in_rate_0 <= 'h0;

 else begin

 if(config_done) begin

 // for every 100th clock

 if(cc_100) begin

 in_temp_0 = 'h0;

 for(i=0;i<2000;i=i+1)

 in_temp_0 = in_temp_0 + in_fifo_0[i];

 // Data Averager

 in_rate_0 <= in_temp_0/'d10000;// GBits

 $fdisplay(handle_q0, "%0d, %0d ",

 clock_counter,in_rate_0);

 end // if (cc_100)

 end // if (config_done)

 end // else: !if(sys_rst)

end // always @ (posedge clk or posedge sys_rst)

5.3 Using gnuplot
A sample csv file generated from incoming and outgoing traffic

from a DUT is shown below.

164800, 0, 0

164900, 0, 0

165000, 1916, 0

165100, 3797, 0

165200, 5679, 0

165300, 7683, 0

165400, 9688, 0

165500, 11692, 0

165600, 13697, 668

165700, 15947, 1670

165800, 18040, 2672

165900, 20378, 4131

166000, 22629, 5591

166100, 24721, 6593

166200, 27060, 8017

166300, 29706, 9020

166400, 32133, 10022

166500, 34744, 11358

166600, 37416, 12695

166700, 39878, 14031

Notice the following key points

- The file does not start from time zero but from a point

where actual transactions are enabled by “config_done”

signal. It indicates that initial configuration setup is

completed. This reduces lines with zero values and

compacts the graph.

- Delay in output due to latency of DUT.

A sample gnuplot script is given below.

Gnuplot script file for plotting data in file

"test.csv"

This file is called test.p

set autoscale # scale axes automatically

unset log # remove any log-scaling

unset label # remove any previous labels

set xtic auto # set xtics automatically

set ytic auto # set ytics automatically

set title "Input and Output Rate"

set xlabel "Time (No. of clocks)"

set ylabel "Rate (MBits/second)"

#set key 0.01,100

#set label "Yield Point" at 0.003,260

#set arrow from 0.0028,250 to 0.003,280

#set xr [100:300]

#set yr [0:2000000]

plot "test.csv" using 1:2 title 'In Rate' with

linespoints, \

 "test.csv" using 1:3 title 'Out Rate' with

linespoints

This script can be loaded in gnuplot from command line as shown

below.

$ gnuplot

 G N U P L O T

 Version 4.0 patchlevel 0

 last modified Thu Apr 15 14:44:22 CEST 2004

 System: Linux 2.6.18-194.32.1.el5

 Copyright (C) 1986 - 1993, 1998, 2004

 Thomas Williams, Colin Kelley and many others

 This is gnuplot version 4.0. Please refer to the

documentation for command syntax changes. The

old syntax will be accepted throughout the 4.0

series, but all save files use the new syntax.

 Type `help` to access the on-line reference

manual.

 The gnuplot FAQ is available from

 http://www.gnuplot.info/faq/

 Send comments and requests for help to

 <gnuplot-info@lists.sourceforge.net>

gnuplot> load 'test.p'

The log also shows where to obtain gnuplot and its

documentation.

A graph obtained for a test csv is shown below.

Figure 7: Graph showing Input and Output rates

5.4 Effects of depth of FIFO on smoothness
In our test case FIFO depth of 2000 was chosen based on traffic

pattern and data rates. You should choose the depth of FIFO based

on your application and simulation environment. The size of FIFO

will affect the smoothness of graph. A larger size of FIFO acts as

a low pass filter and smoothens out short bursts. A comparison of

depth of FIFO versus smoothening is shown below.

Figure 8: Graph showing effects of FIFO sizing

5.5 Future Enhancements
We outlined the quickly designed mechanism we used in our

experiments. In the future we will enhance it with the following

features.

Optimization of FIFO bits

The paper shows a simple mechanism of adding number of bits.

The width of FIFO can be reduced just by saving number of bytes

or even just 1 bit if byte enables are not used.

Hardware implementation

The current implementation is heavy in simulation. It is also

difficult to synthesize due to large memory requirements. The

implementation can be simplified to an accumulator style design.

A suitable mechanism as well as algorithm can be chosen based

on the application.

Various algorithms

This paper presents a simple average of moving window. It has

the flaw of slow start and decay. The scheme worked for us as we

were looking at number of clocks which was much larger than the

FIFO.

Sophisticated algorithms like rolling average, weighted moving

average, or exponential moving average can be used instead to

show better results. These can remove the need for FIFOs and

enable us to use faster and smaller designs suitable for hardware

implementation.

Auto update mechanisms and usage other tools

The current implementation uses readily available gnuplot

package. We need to load the csv file from command line to

update the chart. An auto updating chart can be created by using

better tools or using Tcl-Tk to show graph real time.

