
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. I , JANUARY 1994 1

FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization

in Lookup-Table Based FPGA Designs
Jason Cong, Member, IEEE, and Yuzheng Ding

A6struct- The field programmable gate-array (FPGA) has
become an important technology in VLSI ASIC designs. In the
past a few years, a number of heuristic algorithms have been
proposed for technology mapping in lookup-table (LUT) based
FPGA designs, but none of them guarantees optimal solutions for
general Boolean networks and Little is known about how far their
solutions are away h m the optimal ones. This paper presents a
theoretical breakthrough which shows that the LUT-based FPGA
technology mapping problem for depth minimization can be
solved optimally in polynomial time. A key step in our algorithm
is to compute a minimum height K-feasible cut in a network,
which is solved optimally in polynomial time based on network
flow computation. Our algorithm also effectively minimizes the
number of LUT’s by maximizing the volume of each cut and
by several post-processing operations. Based on these results, we
have implemented an LUT-based FPGA mapping package called
FlowMap. We have tested FlowMap on a large set of benchmark
examples and compared it with other LUT-based FPGA mapping
algorithms for delay optimization, including Chortle-d, MIS-pga-
delay, and DAG-Map. FlowMap reduces the LUT network depth
by up to 7% and reduces the number of LUT’s by up to 50%
compared to the three previous methods.

I. INTRODUCTION

HE SHORT DESIGN cycle and low manufacturing cost T have made FPGA an important technology for VLSI
ASIC designs. The LUT-based FPGA architecture is a popular
architecture used by several FPGA manufacturers, including
Xilinx and AT&T [15], [28]. In an LUT-based FFGA chip,
the basic programmable logic block is a K-input lookup table
(K-LUT) which can implement any Boolean function of up
to K variables. The technology mapping problem in LUT-
based FPGA designs is to cover a general Boolean network
(obtained by technology independent synthesis) using K-
LUT’s to obtain a functionally equivalent K-LUT network.
This paper studies the LUT-based FFGA technology mapping
problem for delay optimization.

The previous LUT-based FPGA mapping algorithms can
be roughly divided into three classes. The algorithms in the
first class emphasize on minimizing the number of LUT’s
in the mapping solutions. This class includes MIS-pga and
its enhancement, MIS-pga-new, by Murgai et al. based on

Manuscript received September 28, 1992; revised April 30, 1993. This
research was supported in part by the NSF under Grant MIP-9110511. Xilinx
Inc. and the State of California MICRO F’rogram under Grant 92-030. This
paper was recommended by Associate Editor L. Trevillyan.

The authors are with the Department of Computer Science, University of
California, Los Angeles, CA 90024.
IEEE Log Number 9212334.

several synthesis techniques [20], [22], Chortle and Chortle-
crf by Francis et al. based on tree decomposition and bin
packing techniques [l 13, [14], Xmap by Karplus based on
the if-then-else DAG representation [17], the algorithm by
Woo based on the notion of edge visibility [27], and the
work by Sawkar and Thomas based on the clique partitioning
approach [24]. The algorithms in the second class emphasize
on minimizing the delay of the mapping solutions. This class
includes MIS-pga-delay by Murgai et al. which combines
the technology mapping with layout synthesis [21], Chortle-
d by Francis et al. which minimizes the depth increase at
each bin packing step [12], and DAG-Map by Cong et al.
[3], [7] based on Lawler’s labeling algorithm. The mapping
algorithms in the third class, including that proposed by Bhat
and Hill [l], and that by Schlag, Kong, and Chan [26], have
the objective of maximizing the routability of the mapping
solutions. Although many existing mapping methods showed
encouraging results, these methods are heuristic in nature, and
it is difficult to determine how far the mapping solutions
of these algorithms are away from the optimal solution.’ It
has been of both theoretical and practical interest to CAD
researchers to develop optimal FPGA mapping algorithms for
general Boolean networks.

This paper presents a theoretical breakthrough which shows
that the LUT-based FPGA technology mapping problem for
depth minimization can be solved optimally in polynomial
time for general K-bounded Boolean networks. A key step
in our algorithm is to compute a minimum height K-feasible
cut in a network, which is solved optimally in polynomial time
based on efficient network flow computation. Our algorithm
also effectively minimizes the number of LUT’s by maximiz-
ing the volume of each cut and by several post-processing
operations. Based on these results, we have implemented an

JT-based FPGA mapping package named FlowMap. We
have tested FlowMap on a set of benchmark examples and
compared it with other LUT-based FPGA mapping algorithms
for delay optimization, including Chortle-d, MIS-pga-delay,
and DAG-Map. FlowMap reduces the LUT network depth by
up to 7% and reduces the number of LUT’s by up to 50%
compared to the three previous methods.

’ Some previous algorithms achieve optimal mapping for restricted problem
domains: Chortle is optimal when the input network is a tree, Chortle-crf and
Chortle-d are optimal when the input network is a tree and h’ 5 6, and DAG-
Map is optimal when the mapping constraint is monotone, which is true for
trees.

0278-0070/94$04.00 0 1994 IEEE

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, JANUARY 1994

Fig. 1. Mapping a Boolean network to a K-LUT network (K = 3).

Our result makes a sharp contrast with the fact that the
conventional technology mapping problem in library-based
designs is “-hard for general Boolean networks [9], [18].
Due to the inherent difficulty, most conventional technology
mapping algorithms decompose the input network into a
forest of trees and then map each tree optimally [9], [18].
Such a methodology was also used in some existing FPGA
mapping algorithms [l l] , [12], [14]. However, the result in
this paper shows that K-LUT mapping can be carried out
directly on general K-bounded Boolean networks to achieve
depth-optimal solutions.

The remainder of this paper is organized as follows. Section
I1 gives a precise problem formulation and some preliminaries.
Section I11 presents our depth-optimal technology mapping
algorithm for LUT-based FPGA designs. Section IV describes
several enhancements of our algorithm for area minimization.
Experimental results and comparative study are presented in
Section V. Extensions and conclusions are presented in Section
VI.

11. PROBLEM FORMULATION AND PRELIMINARIES

A Boolean network can be represented as a directed acyclic
graph (DAG) where each node represents a logic gate? and a
directed edge (z,j) exists if the qutput of gate i is an input
of gate j . A primary input (PI) node has no incoming edge
and a primary output (PO) node has no outgoing edge. We use
input(v) to denote the set of nodes which are fanins of gate
U. Given a subgraph H of the Boolean network, input(H)
denotes the set of distinct nodes outside H which supply
inputs to the gates in H. For a node v in the network, a K-
feasible cone at v , denoted C,, is a subgraph consisting of U
and its predecessors3 such that linput(C,) I 5 K and any path
connecting a node in C, and v lies entirely in C,. The level
of a node v is the length of the longest path from any PI node
to U. The level of a PI node is zero. The depth of a network
is the largest node level in the network. A Boolean network
is K-bounded if linput(v)I 5 K for each node U.

We assume that each programmable logic block in an
FPGA is a K-input one-input lookup-table (K-LUT) that
can implement any K-input Boolean function. Thus, each

’In the rest of the paper gates and nodes are used interchangeably for
Boolean networks.

3~ is a predecessor of 2) if there is a directed path from U to v.

K-LUT can implement any K-feasible cone of a Boolean
network. The technology mapping problem for K-LUT based
FPGA’s is to cover a given K-bounded Boolean network
with K-feasible cones, or equivalently, K-LUT’s4. shows an
example of mapping a Boolean network into a 3-LUT network.
Note that we allow these cones to overlap, which means that
the nodes in the overlapped region can be duplicated when
generating K-LUT’s. In fact, our algorithm is capable of
duplicating nodes automatically when necessary, in order to
achieve depth optimization. A technology mapping solution
S is a DAG in which each node is a K-feasible cone
(equivalently, a K-LUT) and the edge (C,,C,) exists if U

is in input(C,). Our main objective is to compute a mapping
solution that results in the minimum delay.

The delay of an FPGA circuit is determined by two factors:
the delay in K-LUT’s and the delay in the interconnection
paths. Each K-LUT contributes a constant delay (the access
time of a K-LUT) independent of the function it implements.
Since layout information is not available at this stage, we
assume that each edge in the mapping solution contributes
a constant delay. In this case, the delay is determined by the
depth of the mapping solution, which is known as the unit
delay model. We say that a mapping solution is optimal if its
depth is minimum. The primary objective of our algorithm
is to find an optimal mapping solution in terms of depth
minimization, and the secondary objective is to reduce the
number of K-LUT’s used in the technology mapping solution.

Several concepts about cuts in a network will be used in
our algorithm. Given a network N = (V (N) , E (N)) with a
source 3 and a sink t, a cut (X , x) is a partition of the nodes
in V (N) such that s E X and t E x. The node cut-size of
(X , x) , denoted n (X , X) , is the number of nodes in X that
are adjacent to some node in x, i.e.,

n (X , X) = I{. : (z,y) E E (N) , x E X and y E x}l
A cut (X , X) is K-feasible if n (X , X) 5 K. Assume that
each edge (u,u) has a non-negative capacity c(u,v) . The
edge cut-size of (X , Y) , denoted e (X , X) , is the sum of the

41f the input network is not K-bounded, it may not be covered with K-
LUT’s directly. In this case, nodes in the network with more than K fanins
may have to be decomposed before covering. However, we consider such a
decomposition step as part of the synthesis procedure.

CONG AND DING: FLOWMAP AN OPTIMAL TECHNOLOGY MAPPING ALGORITHM

Fig. 2. A 3-feasible cut of edge cut-size 10, volume 9, and height 2.

capacities of the forward edges that cross the cut, i.e.,

Throughout this paper, we assume that the capacity of each
edge is one unless specified otherwise. The volume of a cut
(X , y), denoted woZ(X,X), is the number of nodes in x, i.e.,
woZ(X, x) = 1x1. Moreover, assume that there is a given label
E(w) associated with each node 'U. The height of a cut (X , x),
denoted h (X , X) , is defined to be the maximum label in X,
i.e.,

h (X , X) = max{l(x) : 5 E X }

Fig. 2 shows a cut (X , x) in a network with given node
labels, where n (X , X) = 3, e (X l x) = 10, h (X , X) = 2,
and woZ(X,x) = 9.

111. AN OPTIMAL LUT-BASED FPGA MAPPING
ALGORITHM FOR DEPTH MINIMIZATION

Our algorithm is applicable to any K-bounded Boolean
network. Given a general Boolean network as input, if it is
not K-bounded, there are a number of ways to transform
it into a K-bounded network. For example, the Roth-Karp
decomposition [23] was used in [20] to obtain a K-bounded
network. We use the algorithm DMIG presented in [3], which
is based on the Huffman coding tree construction [16], to
decompose each multiple input simple gate5 into a tree of
two-input simple gates. According to the result in [3], such
a decomposition procedure increases the network depth by
at most a small constant factor. The reason for carrying out
such a transformation is that if we think of FPGA technology
mapping as a process of packing gates into K-LUT's, then,
smaller gates will be more easily packed, and the mapping
algorithm will be able to pack more gates along critical paths to
one K-LUT, resulting smaller depth in the mapping solution.
This argument is justified by our experimental results in Table
111 shown in Section V.

In the rest of this paper, we shall assume that the input
networks are K-bounded networks. Although we transform

'We can always obtain a simple gate network by representing each complex
gate in the sum-of-products form and then replacing it with two levels of
simple gates.

Fig. 3. Constraint on the number of inputs to LUT is not monotone (I< = 3).

an input network into a network of two-input simple gates,
the optimality of our algorithm does not depend on the fact
that each node in the given Boolean network is a two-input
simple gate. The optimality of our mapping result holds as
long as the input network is a K-bounded network, in which
the gates need not to be simple.

The fundamental difficulty in the LUT-based FPGA map-
ping is that the constraint on the number of inputs of a
programmable logic block is not a monotone clustering con-
straint. A clustering constraint r is monotone, if knowing
that a network H satisfies r implies that any subnetwork of
H also satisfies r [19]. For example, if we assume that the
constraint for each programmable logic block is the number
of gates it may cover in the original network, it is a monotone
clustering constraint. Unfortunately, limiting the number of
distinct inputs of each programmable logic block is not a
monotone clustering constraint. For example, Fig. 3 shows
a network of three distinct inputs, which is 3-feasible. But the
subnetwork consisting of nodes t , v and 20 has four distinct
inputs, which is not 3-feasible. Clustering (or, similarly, map-
ping) for a monotone clustering constraint r is much easier
because if a subnetwork H does not satisfy the constraint
r, we can conclude that H is not a part of any cluster. It
was shown that Lawler's labeling algorithm [19] can produce
a minimum depth clustering solution in polynomial time
whenever the clustering constraint is monotone. The DAG-
Map algorithm developed by Cong et al. [3], [7] modified
Lawler's algorithm and applied it to the LUT-based FPGA
mapping problem. Although it achieved encouraging results
for depth minimization, it was shown that the DAG-Map
algorithm is not optimal [3].

The mapping algorithm presented in this paper successfully
overcomes the difficulty due to the nonmonotone clustering
constraint in LUT-based FPGA technology mapping. The
algorithm runs in two phases. In the first phase, it computes
a label for each node which reflects the level of the K-LUT
implementing that node in an optimal mapping solution. In the
second phase, it generates the K-LUT mapping solution based
on the node labels computed in the first phase.

3.1. The Labeling Phase
Given a K-bounded Boolean network N , let Nt denote the

subnetwork consisting of node t and all the predecessors of
t. We define the label of t , denoted Z(t), to be the depth of
the optimal K-LUT mapping solution of Nt. Clearly, the level

4 IEEE TRANSAmONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, JANUARY 1994

(a) (b) (C)

Fig. 4. Computing the label l (t) of node t (K = 3). (a) The partial network. (b) Construction of Nt and the highest 3-feasible cut. (c) Determining l(t).

of the K-LUT rooted at t (if exists) in the optimal mapping
solution of N is at least Z(t), and the maximum label of all the
PO’s of N is the depth of the optimal mapping solution of N .

The first phase of our algorithm computes the labels of all
the nodes in N, according to the topological order starting
from the PI’S. The topological ordering guarantees that every
node is processed after all of its predecessors have been
processed. For each PI node U, we assign l(u) = 0. Suppose
t is the current node being processed. Then, for each node
U # t in Nt, the label Z (U) must have been computed. By
including in Nt an auxiliary node s and connecting s to all
the PI nodes in Nt, we obtain a network with s as the source
and t as the sink. For simplicity we still denote it as Nt . Fig.
4(a) shows part of a Boolean network in which gate t is to be
labeled, and Fig. 4(b) shows the construction of the network
Nt. Let LUT(t) be the K-LUT that implements node t in an
optimal K-LUT mapping solution of Nt. Let 13 denote the set
of nodes in LUT(t) and X denote the remaining nodes in Nt.
Then, (X , x) forms a K-feasible cut between s and t in Nt
because the number of inputs of LUT(t) is no more than K.
Moreover, let U be the node with the maximum label in X ,
then, the level of LUT(t) is Z (U) + 1 in the optimal mapping
solution of Nt. Recall the definition of the height of a cut in
Section II, we have h (X,X) = 1(u). Therefore, in order to
minimize the level of LUT(t) in the mapping solution of Nt,
we want to find a minimum height K-feasible cut (X, x) in
Nt.6 In other words,

Z(t) = min h (X,X) + 1. (1).
(X,s?) is K-feasible

Based on the above discussion, we have
Lemma I: The label Z(t) computed by Eq. (I) gives the mini-

0
Fig. 4(b) and (c) illustrate our labeling method. Since in 4(b)

there is a minimum height 3-feasible cut in Nt of height 1,

mum depth of any mapping solution of Nt .

6We exclude the cuts (X , x) where 7 contains a PI node. Our algorithm
to be shown later on guarantees that such kind of cuts are not generated.

we have Z(t) = 2, and the optimal K-LUT mapping solution
of Nt is shown in Fig. 4(c).

There is no existing algorithm for computing a minimum
height K-feasible cut efficiently. One important contribution
of our work is that we have developed an O(Krn) time
algorithm for computing a minimum height K-feasible cut
in Nt , where rn is the number of edges in Nt. First, we show
that the node labels defined by our labeling scheme satisfy the
following property.

Lemma 2: Let E(t) be the label of node t , then l(t) = p or
l(t) = p + 1, where p is the maximum label of the nodes in
input(t).

Proofi Let t’ be any node in input (t). Then for any cut
(X,x) in Nt, either t’ E X , or (X , x) also determines a
K-feasible cut (X’,X’) in Nt, with h(X‘,X’) 5 h(X,X) ,
whereX’=XnV(Nt ,) a n d X ’ = X n V (N t ,) . I f (X , x) i s
a minimum height K-feasible cut in Nt, then, in the former
case, we have Z(t) = h (X , X) + l 2 Z(t’)+l, i.e., Z(t) > Z(t’);
and in the latter case, we have Z(t’) - 1 5 h(X’,X’) 5
h (X , X) = Z(t) - 1, which implies Z(t) 2 Z(t’). (Note this
proves that the label of any node cannot be smaller than those
of its predecessors.) Therefore, l (t) 2 p.

On the other hand, since the network N is K-bounded,
linput(t)I 5 K. Therefore, (V(Nt) - {t} ,{ t}) is a K-
feasible cut. Because each node in V(Nt) - {t} is either in
input(t) or is a predecessor of some node in input(t), the
maximum label of the nodes in V (N t) - {t} is p. Therefore,

0
According to Lemma 2, our algorithm first checks if there

is a K-feasible cut (X t , x t) of height p - 1 in Nt . If there
is such a cut, we assign Z(t) = p and node t can be packed
with the nodes in wt into one K-LUT in the second phase of
our algorithm for generating the mapping solution. Otherwise,
the minimum height of the K-feasible cuts in Nt is p and
(V(Nt) - {t} ,{ t}) is such a cut. In this case, we assign
l (t) = p + 1 and we shall use a new K-LUT for node t
in the second phase.

h(V(Nt) - {t}, {t}) = p, i.e., Z(t) 5 p + 1.

CONG AND DING FLOWMAP: AN OPTIMAL TECHNOLOGY MAPPING ALGORITHM 5

(a) (b) (C)

Fig. 5. Network transformations in computing a minimum height A--feasible cut in Nt (K = 3).

Whether Nt has a K-feasible cut of height p - 1 or not
can be tested efficiently using the following method. Let p be
the maximum label of the nodes in input(t), which is also
the maximum label of the nodes Nt - {t}. We first apply a
network transformation on Nt that collapses all the nodes in
Nt with label 2 p, together with t, into the new sink t‘. Denote
the resulting network as N;, we have the following result.

Lemma 3: Nt has a K-feasible cut of height p - 1 if and only
if Ni has a K-feasible cut.

Proof: Let Ht denote the set of nodes in Nt that are
collapsed into t’.

If Ni has a K-feasible cut (X’,x’), let X = XI, and
X = (x’ - {t’}) U Ht , then clearly (X , X) is a K-feasible
cut of Nt. Since no node in X’ (= X) has label p or larger,
we have h (X , X) 5 p - 1. Moreover, according to Lemma
2, l (t) 2 p, which implies h (X , X) 2 p - 1. Therefore,

On the other hand, if Nt has a cut (X,x) of height p - 1,
then X cannot contain any node of label p or higher. Therefore,
Ht C x. In this case, (X, (x - Ht) U { t’}) forms a K-feasible

For example, Fig. 5(a) shows the network Nt for node
t in Fig. 4(a), and Fig. 5(b) shows the induced network
Ni. In order to determine if Ni has a K-feasible cut, we
apply another standard network transformation, called the
node-splitting transformation, which reduces the node cut-size
constraint to an edge cut-size constraint by splitting nodes
into edges, so that we can use misting edge cut computation
algorithms [SI, [lo]. Specifically, we construct a network N,”
from N; as follows. For each node w in Ni other than s and
t’, we introduce two nodes w1 and v2 and connect them by
an edge (211, w2) in N,”, which is called a bridging edge. The
source s and sink t’ are also included in N,”. For each edge
(5, w) in Ni, there is an edge (s, wl) in N,”; and for each edge
(w , t ’) in Ni, there is an edge (w2,t’) in N,”. Moreover, for
each edge (U, w) in Ni (U # s and w # t’), we introduce an
edge (UZ, w1) in N,”. We assign the capacity of each bridging
edge to be one, and the capacity of each non-bridging edge

-

h (X , X) = p - 1.

cut of N;. 0

to be infinity. Fig. 5(c) shows the resulting N,” obtained from
Ni in Fig. 5@). According to the result in [lo] (pp. 23-26),
we have

Lemma 4: Ni has a K-feasible cut if and only if N,“ has a
cut whose edge cut-size is no more than K . U

Based on the Max-flow Min-cut Theorem [SI, [lo], N,“ has
a cut whose edge cut-size is no more than K if and only if the
maximum flow7 between s and t’ in N,” has value no more
than K. Since we are only interested in testing if the maximum
flow is of value K or smaller, we apply the augmenting path
algorithm in N,” to compute a maximum flow. (For the basic
concepts of network flow and the details of the augmenting
path algorithm, see [SI, [lo].) Since each bridging edge in N,”
has unit capacity, each augmenting path in the flow residual
graph of N,” from s to t’ increases the flow by one unit.
If we can find K + 1 augmenting paths, then the maximum
flow in N,” has value more than K , and we can conclude
that N,” does not have a cut (X ” , F) with e(X”,x”) 5 K.
Otherwise, the residual graph is disconnected before we find
the (K + 1)th augmenting path. We can find a cut (XI’, x”)
of edge-cut size no more than K in N,“ by performing a depth
first search starting at the source s, and including in X” all
the nodes which are reachable from s in the residual graph.
Since finding an augmenting path takes O(m) time, where m
is the number of edges in the residual graph of N,” (which
is in the same order as the number of edges in Nt) , we can
determine in O(Km) time whether N,” has a cut of edge cut-
size no more than K and find one if such a cut exists. Such a
cut (XI’, x“) in N,” induces a K-feasible cut (XI, F) in Ni,
which in turn gives a minimum height K-feasible cut (X, x)
in Nt.’ Based on the above discussions, we have

Theorem 1: A minimum height K-jeasible cut in Nt can be
found in O(Km) time, where m is the number of edges in Nt . 0

Applying Theorem 1 to each node in N in the topological
order in the labeling phase, we have

III this paper, a flow always means a flow from the source to the sink.
*It is clear that for the resulting cut (X , x) in Nt , x does not contain any

PI nodes since any outgoing edge of the source s in N,“ has infinite capacity.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED ClRCUlTS AND SYSTEMS, VOL. 13, NO. 1, JANUARY 1994

Corollary I : The labels of all the nodes in N can be computed
in O(Kmn) time, where n and m are the number of nodes and

In fact, the result in Theorem 1 can be generalized for
computing the minimum height K-feasible cut in a general
network with arbitrary node labels and edge capacities as
follows.

Theorem 2: Given a general network N with a non-negative
integer capacity defined on each edge and a non-negative inte-
ger label dejined on each node except the sink. For anzposi-
tive integer K , a minimum height K-feasible cut (X , X) can
be found in O(m . min{K, fi} . log L) time, and a mini-
mum height cut (X , x) with e (X , x) _< K can be found in
O(mn log(n*/m) log L) time, where n and m are the number
of the nodes and edges in N , respectively, and L is the number

The proof and the detailed algorithm can be found in [4].
This result has been used for delay-optimal K-LUT technology
mapping under arbitrary net-delay models [6] .

edges in N , respectively. 0

of different node labels. 0

3.2. The Mapping Phase
The second phase of our algorithm is to generate the K -

LUT’s in the optimal mapping solution. Let L be the set of
gates, which are to be implemented using K-LUT’s. Initially,
L contains all the PO nodes. We process the nodes in L one
by one. For each node Y in L, assume that (X,, xu) is the
minimum height K-feasible cut in N, that we have computed
in the first phase by the labeling algorithm. We generate a K-
LUT w‘ to implement the function of gate w, using the input
signals from X , to x,. That is, the K-LUT Y’ includes all
the gates in T, and input (U’) = input (r,). (Since the cut
is K-feasible, we have linput(X,)I 5 K.) Then, we update
the set L to be (L - {w})U input (w’). It is possible that a
gate w belongs to both xv and Tu for two different gates ‘U

and U in L. In this case, gate w is automatically duplicated
and is included in both K-LUT’s w’ and U’. It is also possible
that no K-LUT is generated for a gate w since it has been
completely covered by the K-LUT’s generated for some of
its successors. In general, a K-LUT has to be generated for a
gate w if w belongs to input (U’) of some K-LUT U’ which
has been generated, since its output signal is required by w’
as input.

The second phase ends when L consists of only PI nodes of
the original network. It is clear that at the end of the execution
we get a network of K-LUT’s which is logically equivalent
to the original network.

Our minimum depth LUT-based FPGA mapping algorithm,
named FlowMap, is summarized in Fig. 6. Based on the above
discussions, we have

For any K-bounded Boolean network N , the
FlowMap algorithm produces a K-LUT mapping solution with
the minimum depth in O(Kmn) time, where n and m are the
number of nodes and edges in N .

Pro08 By induction one can easily show that for any
node w in N, if a K-LUT w’ is generated for w in the second
phase, then the level of w’ in the mapping solution is no more
than Z(v), which is the depth of the optimal mapping solution
for N,. Since any mapping solution for N induces a solution

Theorem 3:

for N,, Z(w) is also the best possible depth for the K-LUT
generated for w in any mapping solution for N . Therefore, the
mapping solution for N generated by the FlowMap algorithm
is optimal. Moreover, since the labeling phase takes O(Kmn)
time and the mapping phase takes O(n + m) time, the total

0
In the current LUT-based FPGA architecture, the typical

value of K is 4 or 5. Moreover, if the average number of
fanins (or fanouts) of the nodes in N is bounded by a constant
(which is two in our implementation), we have m = O(n) .
Therefore, the complexity of the FlowMap algorithm is O(n2)
in practice.

Note that in a network of n nodes, there are O (n K) K -
feasible cuts. An exhaustive enumeration will resulting in
a pseudo polynomial time algorithm of complexity O(nK) .
Our algorithm, on the other hand, is strongly polynomial with
respect to K , thus it is much more efficient.

complexity of FlowMap is O(Kmn).

IV. ENHANCEMENT OF THE FLOWMAP
ALGORITHM FOR AREA OPTIMIZATION

The secondary objective of our technology mapping al-
gorithm is area optimization, i.e., to minimize the number
of K-LUT’s in the mapping solution. In FlowMap, area
optimization is considered by maximizing the volume of
each cut during the mapping process and by post-processing
operations for K-LUT reduction.

4.1. Maximizing the Cut Volume During Mapping

According to the discussion in the preceding section, for
each node t in the input network N, the FlowMap algorithm
computes a minimum-height K-feasible cut (X , x) in Nt
and the nodes in w will be packed into one K-LUT t’ if a
K-LUT is generated to implement t. In general, the minimum-
height K-feasible cut is not unique. Intuitively, the larger
v o l (X , x) = 1x1 is, the more nodes we can pack into the
K-LUT t’, and the fewer K-LUT’s we use in total. Therefore,
our algorithm wants to maximize the volume of the cut during
the minimum height K-feasible cut computation.

According to Lemmas 3 and 4, finding a minimum height
K-feasible cut (X , x) in Nt is reduced to finding a K-feasible
cut (XI, x’) in Nl? which is further reduced to finding a cut
(X ” , F) with e(X”,X”) 5 K in N,”. According to the
transformations in the preceding section, it is easy to see that
voZ(X’,X’) = ~(woZ(X”,x”) - e (X ” , F) + l), and if the
number of nodes with the maximum label in Nt is P, then
woZ(X,x) = woZ(X’,x’) + P. Note that for a given Nt,
P is a constant. Therefore, v o Z (X , x) is maximized when
wol(X’ ,F) is maximized, and wol(X’ ,F) is maximized
when woI(X”, x”) -e(X”, x”) is maximized. Thus, we want
to find a cut (X”,x”) in N,” such that e (X ” , F) 5 K
and woZ(X”, x”) - e(X”, x”) is maximum. Therefore, we
want to find a min-cut in N,” (i.e.. a cut (X”,x”) with the

9Assume that the minimum height of the K-feasible cuts in Nt is p - 1.
Otherwise, (V(Nt) - { t }, { t }) is a minimum height IT-feasible cut in Nt ,
which is trivial to compute.

CONG AND DING: FLOWMAP: AN O m M A L TECHNOLOGY MAPPING ALGORITHM 7

minimum e (X ” , X ”) of the maximum volume.’o First, we
give the following characterization of a maximum volume
min-cut.

Lemma 5: There is a @que maximum volume min-cut in any
netw_ork. Moreover, i f (X , X) is the maximum~olume min-cut and
(Y,Y) is another min-cut differentfrom (X , X) , then X C Y .

Let (X , X) and (Y , y) be two min-cuts of a
given network N . Then, (X n Y , x U F) is also a min-cut.
If (X , x) is a maximum volume min-cut, we have 1x1 2
IX U 51, i.e., P Y . Moreover,
if (Y ,Y) is also a maximum volume min-cut, then X = 7,
which implies X = Y. U

Our algorithm computes a maximum volume min-cut
(x”,XII) in N,” as follows: we first compute a maximum
flow f in N,”, and obtain the flow residual graph Rf. We
then perform a depth-first search in Rf from the source s to
find all the nodes reachable from s. These nodes (including
s) form the set X”, while all the other nodes form the set
X”. The next lemma shows that the min-cut computed by our
algorithm indeed has the maximum volume.

Lemma 6: Let Rf be the residual graph of a maximumjlow
f. Let X be the set of nodes in Rf reachable from the source
s, and x be the set of the remaining nodes. Then, (X , x) is a
maximum volume min-cut.

Proof: According to the Max-flow Min-cut Theorem 181,
[IO], (X , X) is a min-cut. Let (Y,F) be the maximum volume
min-cut. According to Lemma 5 , If Y # X , then Y c X, and
there is a node w E X - Y . Since (Y ,y) is also saturated by f ,
and w E P, w is not reachable from s, which is a contradiction.
0

Pro05

x, which implies X

-

Combining Theorem 1 and Lemma 6, we have
Theorem: A maximum volume min-cut in N,“ can be found

in O(Km) time, where m is the number of edges in N t . 0
Therefore, FlowMap maximizes the number of gates cov-

ered in each K-LUT by maximizing the volume of each
min-cut in N,”. As a result, area minimization is also achieved
during depth-optimal mapping in FlowMap.

4.2. Postprocessing Operations for K-LUT Reduction
In the preceding subsection, we have described the tech-

niques of minimizing the number of K-LUT’s during the
depth-optimal mapping. After obtaining a K-LUT mapping
solution using the FlowMap algorithm, we want to further
reduce the number of K-LUT’s used in the mapping solution
without increasing the depth.

In [3], two depth-preserving operations were developed to
minimize the number of K-LUT’s in the mapping solutions of
DAG-Map. One is called the predecessor packing. If a K-LUT
U has a fanin K-LUT w, w is fanout-free and (Znput({u, w})l 5
K, then w can be merged into U. The predecessor packing
operation is shown in Fig. 7. Another operation is called the
gate decomposition. If a K-LUT U has two fanin K-LUT’s w
and 20, both are fanout-free, and linput({w,w})l 5 K, then
w and 20 can be merged into one K-LUT that has a single

lo T ~ I is another reason to compute a min-cut (instead of any cut with
e (X ” , X “) 5 K) in N,”: For every signal across the cut in Nt, we need to
generate the signal using a K-LUT. Therefore, minimizing the node cut-size
in Nt will also lead to reduction of the number of IT-LUT‘s.

algorithm FlowMap
/* phase 1: labeling network */
for each PI node v do

T := list of non-PI nodes in topological order.
while Tis not empty do

I (v) := 0

remove the first node r from T..
construct the network N I ;
letp = max(l(u) : U E inpuf(r) 1;
transform N , into
transform N‘, into KfJ as follows:

by collapsing all nodes in N I with label p into r:

split every node in (x : x E A’;, x # s, x # f) into two
and connect them with a bridging edge of capacity 1;

assign all non-bridging edges capacity -;

usingthe augmenting path algorithm;

X, := It); I (r) : = p + 1

injuce %cut (X, 2) in NI from the cut (X”, 2”) in
X I : = X ; I (r) : = p

compute a cut (x”, X“) in N”, s.t. e (x”, 2’’) I K

if (r. X ”) is not found in

else

then

endif
endwhile;
I* phase 2: generate K-LUTs */
L := list of PO nodes;
while L contains non-PI nodes do

take a non-PI node v fmm L;
generate a K-LUT v‘ to implement the function of v

L := (L - [v)) U inpur(v’)
such that inpur (v’) = input (X,);

endwhile
end-algorithm;

Fig. 6. Pseudocode of the FlowMap algorithm.

fanout to U, providing that we can carry out the Roth-Karp
decomposition [23] on U with respect to its input w and w. The
gate decomposition operation is shown in Fig. 8. Clearly, these
two operations only take local information into consideration
when reducing the K-LUT’s.

In this subsection, we want to generalize the idea of pre-
decessor packing so that instead of packing U with one of its
fanins into a K-LUT, we try to pack a set of its predecessors
(including U), denoted P,, into a single K-LUT. Fig. 9
illustrates the new operation, which is called the $ow-pack.
Clearly, we need to guarantee the condition that linput(P,)I 5
K in order to carry out the packing. Let M be the current
mapping solution and Mu be the subnetwork of M consisting
of K-LUT U and all its predecessors. Then, P, can be packed
into a single K-LUT if and only if (V(M,) - P,, Pu) forms a
K-feasible cut in Mu. Moreover, the larger lP,l is, the more
K-LUT’s we reduce in the mapping solution M. Therefore,
we want to find a K-feasible cut with the maximum volume
in Mu. The preceding subsection shows that a maximum
volume min-cut can be computed efficiently. However, our
experimental results showed that using maximum volume
min-cut for K-LUT reduction is less effective due to the
following reason. The resulting K-LUT network produced
by the FlowMap algorithm is usually much denser than the
initial 2-input network. Consequently, in many cases, Mu has
a unique min-cut (V(Mu) - {U}, {U}). We need to find larger
K-feasible cut to overcome this problem.

Since there are only O (n K) different K-feasible cuts in
a network of size n, a maximum-volume K-feasible cut can

a b c d e f a b c d e f

'- - 1- - - - - '

abed e f

Fig. 7. Predecessor packing (h' = 5).

a b c d e f g c a b e f g d c a b e f g d

Fig. 8. Gate decomposition (K = 5).

=3

also be determined in O(nK) time by enumerating all the K -
feasible cuts. However, this method is too expensive when n
is large, even for K = 5. Therefore, we have developed a
heuristic algorithm.

We define the rank of a cut (X,x), denoted T (X , X) , to
be an ordered pair < n(X,W), -wol(X,x) >. The cuts can
be ordered according to their ranks under the lexicographic
ordering, i.e., for any two cuts (X,x) and (Y ,P) , r (X , X) >
r(Y,Y) if n (X , x) > n(Y,F), or n (X , X) = n(Y,P) and
w o l (X , x) < voZ(Y,B). Clearly, the maximum volume min-
cut has the smallest rank.

Given a K-LUT network M and a K-LUT U, our algorithm
iteratively computes a sequence of cuts in Mu whose rank

is monotonically increasing, and at each step, we minimize
the increase of the rank of the cut. There are two reasons to
minimize the rank. First, we want to limit the increase of the
node cut-size at each step since we are interested only in K -
feasible cuts. Second, for the cuts of the same node cut-size,
the smaller the rank is, the larger volume the cut has.

Specifically, we start with the maximum volume min-cut
(XO, x~), which has the minimum rank. In the ith iteration
(i 2 1). we compute a new cut (Xi,Xi) from the previous
cut (Xi-1,Xi-l) in the sequence as follows.

be the
nodes in Xi-1 that are adjacent to some node in xi-1. To
compute (Xi, Xi), we first collapse all the nodes in Ti-1 into

-
-

Let n(X+I,Xi-l) = ki-1, and let w 1 , w 2 , ...,

CONG AND DING FLOWMAP: AN OpIlMAL TECHNOLOGY MAPPING AUjORITHM

5xpl (104)l 26 3 I 2 4 3

TABLE I
COMPARISON WITH CHORTLE-D AND DAG-MAP

2 5 3
Ssym (200)
9symml (191)
C499 (658)
C880 (548)
aIu2 (393)
a h 4 (726)
apex6 (779)
apex7 (247)
count (216)
des (3263)
duke2 (392)
misex l (57)
rd84 (141)
rot (647)
vg2 (120)
z4mI (48)

Total

63
59

382
329
227
500
308
108
91

2086
241

19
61

326
55
25

4906

5
5
6
8
9
10
4
4
4
6
4
2
4
6
4
3
87

61 5
58 5

207 5
243 8
169 8
305 10
266 4
91 4
81 4

1433 6
192 4

15 2
43 4

292 6
4 6 4
17 3

3543 85
Comparison 1+50.4% +4.8% I +8.6% +2.4%

We also tested the above three algorithms on the inpu

61 5
58 5

154 5
232 8
162 8
268 10
257 4
89 4
76 3

1308 5
187 4
15 2
43 4

268 6
45 4
13 3

3261 83
1 1

ietworks used by
DAG-Map in [3]. The results showed that compared to FlowMap, DAG-
Map used 5.6% more 5-LUT’s and had 1.2% larger network depth, while
Chortle4 used 52.2% m m SLUT‘S and had 10.7% larger network depth.
FlowMap produced consistent better results than the other two algorithms.

the sink U. Denote the reduced network as MA. Moreover, let
M;(j) denotes the network obtained from M t by collapsing
wj (1 5 j 5 ki- 1) into the sink U. We compute the maximum
volume min-cut (Y,,Fj) in ~ : (j) for every j , 1 5 j I
ki-1. Let k, be the minimum node cut-size of these cuts.
Moreover, among those cuts that have node cut-size k,, let
(Y,y) be the one of maximum volume. Let X, = Y, and
X, = V (M ~ > - X,, we accept (X,,Xi) as the resulting cut
of the ith iteration.

It can be shown [4] that the cut (Xi, Ti) has the following
properties:

-

-
(1) WO~(X~,X*) > vol(Xa-1, - Xi-1);
(2) n(X,,_x,) > ~(Xd-A-1); ancl
(3) r(X,,Xa) 5 r(X,X) for any cut (X,X) such that

Therefore, the cut computed at each step is locally optimal.
This iterative procedure ends when at some step 1, (Xl, Xl)

is not K-feasible. The last K-feasible cut, (Xl-l,Xl-~),
computed in the sequence, is used in the flow-pack algorithm
such that Pu = Xl-1. Since the node cut-size is monotonically
increasing, we have the number of iterations E 5 K. Moreover,
each iteration consists of at most K maximum volume min-cut
computations, each of time complexity O(Km) (Theorem 4).
Therefore, the time complexity for carrying out the flow-pack
algorithm at each node is bounded by O(K3m), where m is
the number of edges in the K-LUT network.

The flow-pack algorithm is implemented as a pst-proc-
essing step of FlowMap. During the post-processing phase,
we first carry out the gate-decomposition operation. (In fact,
we carry out a maximum set of gate-decomposition oper-
ations simultaneously by computing a maximum cardinal-

X C Xa-1.

TABLE II
COMPARISON WITH MIS-PGA-DELAY ALGORITHM

MIS-pgadelay FlowMap
#LuT’s depth #LuT’s depth Circuit

21 22 3 5xpl
Ssym
9symml
c 4 9 9
C880
alu2
a h 4
apex6
apex7
count
des
duke2
misex l
rd84
Tot

vg2
z4mI
Total
Comparison

7 3
7 2

199 8
259 S
122 c
155 11
274 5

95 4
81 4

1397 11
164 c

17 2
13 ?

322 5
39 4
10 4

3182 9c
+9.8% +7.1’?4

60
55
68

124
155
253
238
79
31

1310
174
16
46

234
29

5
2899

I

5
5
4
8
9
9
5
4
5
5
4
2
4
7
3
2

84
1 1

ity matching among all pairs of gates which are eligible
for gate-decomposition. Details of the matching based gate-
decomposition algorithm can be found in [3].) Then, we apply
the flow-pack operation to each K-LUT U in the mapping
solution so that U is collapsed with a maximal subset of its
predecessors into a single K-LUT.

The advantage of the flow-pack operation is clear: the
flow-pack operation takes the information about the entire sub-
network Mu into consideration, while the predecessor packing
examines only the nodes adjacent to U locally. Therefore, in
general flow-pack leads to more substantial reduction of the
number of K-LUT’s. Our experimental results show that the
flow-pack operation alone reduced the number of K-LUT’s
by 13.5% on average.

v. EXPERIMENTALRESULTS

We have implemented the FlowMap algorithm and its
preprocessing and post-processing steps using the C language
on Sun SPARC workstations. We used input/output routines
and general utility functions provided by MIS [2] in our
implementation. Given a general Boolean network as input,
we first decompose it into a 2-input network of simple gates
as described in [3]. We then apply the FlowMap algorithm to
obtain a minimum depth K-LUT mapping solution. Next, we
perform a matching-based gate-decomposition procedure on
the K-LUT network, followed by the flow-pack operation to
reduce the number of K-LUT’s in the mapping solution. We
chose the size of the K-LUT to be K = 5, reflecting, e.g.,
the XC3000 FPGA family produced by Xilinx [28]. We tested
FlowMap on a number of MCNC benchmark examples and
the results were compared with those produced by Chortle-d
[13], MIS-pga-delay [21], and DAG-Map [3]. The results are
shown in Tables I and 11.

In Table I, we used the initial networks provided by Robert
Francis, which were used by Chortle-d to obtain the results

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, JANUARY 1994

60 5
55 5
68 4

124 8
155 9
253 9
238 5
79 4
31 5

1310 5
174 4
16 2
46 4

234 7
29 3
5 2

2899 84
1 1

TABLE III
IMPACT OF DECOMP~SITTON METHODS ON ~~APPING RESULTS

64 5
56 5
84 5

108 9
143 11
252 11
238 6
72 4
31 5

1314 6
148 5
15 2
46 5

236 8
29 4

5 2
2863 96

-1.2% +14.3%

DMIG-3 DMIG-4 DMG-5
depth #LUT’s Circuit

5xpl
S s y m

9 s y m m l
c 4 9 9
C880
alu2
aIu4

apex6
apex7
count

des
duke2

m i s e x l
rd84

vg2
z 4 m l
Total

Comparison

T O t

depth #LuT’s depth # L W s depth
22 31 22 31 22 31 22 3

reported in [13], for all the three algorithms. These initial
networks were obtained by a sequence of technology inde-
pendent area and depth optimization steps using MIS. (Since
these networks are already 2-input networks, we did not
apply our preprocessing algorithm for FlowMap.) Overall, the
solutions of Chortle-d used 50.4% more 5-LUT’s and had
4.8% larger network depth; the solutions of DAG-Map used
8.6% more 5-LUT’s and had 2.4% larger network depth. Note
that FlowMap always results in the mapping solution of the
smallest depth. Moreover, in terms of the number of 5-LUT’s
used in the mapping solutions, FlowMap is consistently better
than Chortle-d for all examples, and is better than or as good
as DAG-Map in most cases.

In Table 11, we cited the results of MIS-pga-delay from
[21] since we were unable to run the program directly.
The FlowMap results were obtained by first synthesizing
the original benchmarks using the MIS optimization script
used by Chortle-crf [14] and DAG-Map [3] for technology-
independent optimization, then applying the FlowMap algo-
rithm for technology mapping. Since MIS-pga-delay combines
logic synthesis and technology mapping, in several cases it
produced mapping solutions of smaller depth than those of
RowMap. However, overall MIS-pga-delay still used 9.8%
more 5-LUT’s and had 7.1% larger depth.

We have also evaluated the impact of the choices of multi-
input gate decomposition methods on the mapping results.
We used the DMIG algorithm [3] to decompose the ini-
tial networks into two-, three-, four-, or five-input networks
and applied FlowMap on the resulting networks. The initial
networks for these decomposition algorithms are the same
as those used to produce the FlowMap results in Table 11.
We summarize the results in Table III. It can be seen that
two-input decomposition gives the best depth results. On the
other hand, multi-input decompositions use slightly fewer K -
LUT’s in some cases. It was observed during the experiments
that this reduction is achieved mainly by the post-processing
operations. Intuitively, when the gates have larger number of

67 5
55 5
84 5

108 9
146 11
256 11
237 6
69 5
31 5

1343 7
144 c
20 3
43 5

29 3
5 2

2882 99

223 a

-0.6 +17.9%

64 6
56 6
84 5

108 9
141 13
263 13
230 6
70 5
31 5

1290 7
142 6
20 3
42 5

222 9
29 5
5 2

2819 110
-2.7% +31.0%

TABLE IV
EFFEcIlvENEsS OF THE FLOWMAP

POST-PROCESSING PHASE FOR AREA M~IMIZATION

Number of 5-LUT’s
No Gate- Gate-Decomp.

Post- Decomp. & Circuit Depth

5xpl 3 24 24 22
S s y m 5 76 71 60

Ssymml 5 68 64 55
c 4 9 9 4 80 76 68
C880 8 133 133 124
alu2 9 167 166 155
alu4 9 279 277 253

apex6 5 276 273 238
apex7 4 88 88 79
count 5 43 43 31

des 5 1539 1521 1310
duke2 4 196 193 174

m i s e x l 2 20 18 16
rd84 4 52 50 46
rot 7 258 258 234
vg2 3 32 31 29

z 4 m l 2 5 5 5
Total 84 3336 3291 2899

processing Only How-Pack

Comparison 1 -1.4% -15.1%

fanins, the mapping phase may result in many unsaturated
K-LUT’s, which gives more flexibility to the post-processing
operations for further reduction of the number of K-LUT’s.
However, this reduction is usually not worthwhile considering
the substantial increase in the depth of the mapping solutions.

Finally, We have tested the effectiveness of the post-
processing phase for area minimization. The results are shown
in Table IV. The initial networks used for this experiment are
the same as those used in Table 11. The post-processing phase
reduced the number of K-LUT’s in the mapping solution by
15.1%, and the flow-pack operation alone reduced the number
of K-LUT’s (after gate-decomposition operation) by 13.5%.

The experiments were carried out on a Sun SPARC IPC
workstation (14.8 MIPS). For each benchmark example, our

CONG AND DING: FLOWMAP AN OF’TIMAL TECHNOLOGY MAPPING ALGORITHM 11

system took less than one minute of CPU time (in most cases
a few seconds). Therefore, it is much faster than the Boolean
optimization based algorithms.

VI. CONCLUSION AND FUTURE EXTENSIONS
In this paper, we have presented a technology mapping

algorithm named FlowMap for depth minimization in LUT-
based FPGA designs, which is optimal for any K-bounded
Boolean network. It is based on efficient computation of
minimum height K-feasible cuts in a network. A number of
area optimization techniques also allow FlowMap to reduce the
number of K-LUT’s significantly. Compared to the existing
LUT-based FPGA technology mapping algorithms for delay
optimization, FlowMap reduces the depth of the LUT network
by up to 7% and reduces the number of LUT’s by up to 50%.
FlowMap takes less than one minute of CPU time for each of
the benchmarks in our test suite.

One extension is to use a more general delay model other
than the unit delay model. For example, Chan, Schlag, and
Kong [25] used the nominal delay model in FPGA designs
where the interconnection delay of a signal net is estimated by
the number of fanouts of the net. Their results showed that the
nominal delay model estimates the interconnection delay quite
well. Based on Theorem 2, we have generalized the FlowMap
algorithm to perform delay-optimal mapping under arbitrary
net-delay models, including the nominal delay model [6].

Another extension is to combine area and depth optimization
in the mapping procedure. Note that the depth of every
node is minimum in a FlowMap mapping solution, while
in fact only the depths of the nodes on the critical paths
need to be minimized to guarantee depth-optimal mapping.
The slacks of the non-critical nodes can be utilized for area
minimization without affecting the depth optimality. This
method can be further extended to the general problem of
area minimization under given depth constraint. Based on
a set of depth relaxation operations defined for non-critical
nodes, We have developed an algorithm that can produce a
spectrum of area-optimized mapping solutions for different
depth constraints, yielding smooth area and depth trade-off
in LUT-based FPGA designs [5].

The area-optimal mapping problem for LUT-based FPGA
designs is still open. Based on the concept of the maximum
fanout-free cones, introduced in [5] we have developed a
polynomial time algorithm for area-optimal K-LUT mapping
without node duplication for any fixed K [5].

ACKNOWLEDGMENT

The authors thank Professor Jonathan Rose, Robert Fran-
cis, and Rajeev Murgai for their assistance in the authors’
comparative study.

REFERENCES

[l] N. Bhat. and D. Hill, “Routable technology mapping for FPGA’s,” in
First Inr. ACMISIGDA Workshop on Field Programmable Gate Arrays,
Feb. 1992, pp. 143-148.

[2] R. K. Brayton, R. Rudell, and A. L. Sangiovanni-Vincentelli, “MIS: A

multiple-level logic optimization,” IEEE Trans. Computer-Aided Design,

[3] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-
map: Graph-based FPGA technology mapping for delay optimization,”
IEEE Design and Test of Computers, pp. 7-20, Sept. 1992.

[4] J. Cong and Y. Ding, “An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs,” Tech. Rep.
CSD-920022, UCLA Computer Science Dept., May 1992.

151 J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” in Proc. 30th ACMIIEEE Design Automation
Conf., June 1993, pp. 213-218.

[6] J. Cong, Y. Ding, T. Gao, and K. Chen, “An optimal performance-driven
technology mapping algorithm for LUT based FPGA’s under arbitrary
net-delay models,” in Proc. 1993 Inr. Conf. on Computer-Aided Design
and Computer Graphics, Aug. 1993, pp. 599-603.

[7] J. Cong, A. Kahng, P. Trajmar, and K. C. Chen, “Graph based FPGA
technology mapping for delay optimization,” in ACM Int. Workshop on
Field Programmable Gate Arrays, Feb. 1992, pp. 77-82.

[8] T. Cormen, C. Leiserson, and R. Rivest, Algorithms. Cambridge, MA:
MIT Press, 1990.

[9] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology mapping in MIS,” in Proc. IEEE Int. Conf.
Computer-Aided Design, 1987, pp. 1 1 6 1 19.

[lo] L. R. Ford and D. R. Fulkerson, Flows in Nefworks. Princeton, N J
Princeton Univ. Press, 1962.

[111 R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping
program for lookup table-based field programmable gate arrays,” in
Proc. 27th ACMIIEEE Design Automation Conf., 1990, pp. 613-619.

[12] R. J. Francis, J. Rose, and 2. Vranesic, “Technology mapping for delay
optimization of lookup table-based FPGA’s,” in MCNC Logic Synthesis
Workshop, 1991.

[13] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of
lookup table-based FPGA’s for performance,” in Proc. IEEE Int. Cor$
Computer-Aided Design, Nov. 1991, pp. 568-571.

[14] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-cxf Fast technology
mapping for lookup table-based FPGA’s,” in Proc. 28th ACMIIEEE
Design Automation Conf., 1991, pp. 613-619.

151 D. Hill, “A CAD system for the design of field programmable gate ar-
rays,” in Proc. ACMIIEEE Design Automation Conf. 1991, pp. 187-192.

161 D. A. Huffman, “A method for the construction of minimum redundancy
codes,’’ in Proc. IRE 40, 1952, pp. 1098-1101.

171 K. Karplus. “Xmap: A Technology mapper for table-lookup field-
programmable gate arrays,” in Proc. 28th ACMIIEEE Design Automation
Cor$, 1991, pp. 24CK243.

181 K. Keutzer, “DAWN: Technology binding and local optimization by
DAG matching,” in Proc. 24th ACMIIEEE Design Automation Conf.,

[19] E. L. Lawler, K. N. Levitt, and J. Turner, “Module clustering to
minimize delay in digital networks,” IEEE Trans. Computers, vol C-18,

[20] R. Murgai, et al., “Logic synthesis algorithms for programmable gate
arrays,” in Proc. 27th ACMIIEEE Design Automation Conf., 1990, pp.
620-625.

[21] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance directed synthesis for table look up programmable gate
arrays,’’ in Proc. IEEE Int. Conf. Computer-Aided Design, Nov. 1991,

[22] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Improved logic synthesis algorithms for table look up architectures,” in
Proc. IEEEInt. Conf. Computer-Aided Design, Nov. 1991, pp. 564-567.

[23] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
J. Res. Devel., pp. 227-238, Apr. 1962.

[24] P. Sawkar and D. Thomas, ‘Technology mapping for table-look-up
based field programmable gate arrays,’’ in ACMISIGDA Workshop on
Field Programmable Gate Arrays, Feb. 1992, pp. 83-88.

[25] M. Schlag, P. Chan, and J. Kong, “Empirical evaluation of multilevel
logic minimization tools for a field programmable gate array tech-
nology,” inProc. 1st Int. Workshop on Field Programmable Logic and
Applications, Sept. 1991.

[26] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup table-based FPGA’s,” in Proc. 1992 IEEE Int. Conf.
Computer Design, Oct. 1992.

[27] N. S. Woo, “A heuristic method for FPGA technology mapping based
on the edge visability,” in Proc. 28th ACMIIEEE Design Automation
Conf., 1991, pp. 248-251.

[28] Xilinx, The Programmable Gate Array Data Book. San Jose, CA:
Xilinx, 1992.

pp. 1062-1081, NOV. 1987.

1987, pp. 341-347.

pp. 47-57, Jan. 1969.

pp. 572-575.

12 IEEE TRANSACXIONS ON COMPUTER-AIDED DESIGN OF INTUjRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1. JANUARY 1994

Jason (Jingsheng) Cong (S’SS-M’W) received the
B. S . degree in computer science from the Peking
University in 1985. He received the M. S. degree
and Ph. D. degree in computer science from the
University of Illinois at Urbana-Champaign in 1987
and 1990, respectively.

Currently, he is an assistant professor in the
Computer Science Department of University of Cal-
ifornia, Los Angeles. From 1986 to 1990, he was a
research assistant in the Computer Science Depart-
ment of the University of Illinois. He worked at the

Xerox Palo Alto Research Center in the summer of 1987. He worked at the
National Semiconductor Corporation in the summer of 1988. His research
interests include computer-aided design of VLSl circuits, fault-tolerant design
of VLSl systems, and design and analysis of efficient combinatorial and
geometric algorithms. He has published over fifty research papers in these
fields.

Dr. Cong received the Best Graduate Award from the Peking University
in 1985. He was awarded a DEC Computer Science Fellowship in 1988.
He received the Ross J. Martin Award for Excellence in Research from the
University of Illinois at Urbana-Champaign in 1989. He received the National
Science Foundation Research Initiation Award in 1991, and the National
Science Foundation Young Investigator Award in 1993. He has served on the
program committees of several VLSI CAD conferences. He was the chairman
of the 4th ACWSIGDA Physical Design Workshop.

Yuzheng Ding received the B. S. degree in com-
puter science from Peking University, and the M.
S. degree in computer science from Tsinghua Uni-
versity, both in Beijing, China. Currently he is a
research assistant in the Department of Computer
Science of University of California, Los Angeles,
where he is pursuing his Ph. D. degree.

His research interests include computer-aided de-
sign of VLSl circuits, design and analysis of data
structu~s and algorithms, and database systems.

Mr. Ding is a member of ACM.

