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A6struct- The field programmable gate-array (FPGA) has 
become an important technology in VLSI ASIC designs. In the 
past a few years, a number of heuristic algorithms have been 
proposed for technology mapping in lookup-table (LUT) based 
FPGA designs, but none of them guarantees optimal solutions for 
general Boolean networks and Little is known about how far their 
solutions are away h m  the optimal ones. This paper presents a 
theoretical breakthrough which shows that the LUT-based FPGA 
technology mapping problem for depth minimization can be 
solved optimally in polynomial time. A key step in our algorithm 
is to compute a minimum height K-feasible cut in a network, 
which is solved optimally in polynomial time based on network 
flow computation. Our algorithm also effectively minimizes the 
number of LUT’s by maximizing the volume of each cut and 
by several post-processing operations. Based on these results, we 
have implemented an LUT-based FPGA mapping package called 
FlowMap. We have tested FlowMap on a large set of benchmark 
examples and compared it with other LUT-based FPGA mapping 
algorithms for delay optimization, including Chortle-d, MIS-pga- 
delay, and DAG-Map. FlowMap reduces the LUT network depth 
by up to 7% and reduces the number of LUT’s by up to 50% 
compared to the three previous methods. 

I. INTRODUCTION 

HE SHORT DESIGN cycle and low manufacturing cost T have made FPGA an important technology for VLSI 
ASIC designs. The LUT-based FPGA architecture is a popular 
architecture used by several FPGA manufacturers, including 
Xilinx and AT&T [15], [28]. In an LUT-based FFGA chip, 
the basic programmable logic block is a K-input lookup table 
(K-LUT) which can implement any Boolean function of up 
to K variables. The technology mapping problem in LUT- 
based FPGA designs is to cover a general Boolean network 
(obtained by technology independent synthesis) using K- 
LUT’s to obtain a functionally equivalent K-LUT network. 
This paper studies the LUT-based FFGA technology mapping 
problem for delay optimization. 

The previous LUT-based FPGA mapping algorithms can 
be roughly divided into three classes. The algorithms in the 
first class emphasize on minimizing the number of LUT’s 
in the mapping solutions. This class includes MIS-pga and 
its enhancement, MIS-pga-new, by Murgai et al. based on 
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several synthesis techniques [20], [22], Chortle and Chortle- 
crf by Francis et al. based on tree decomposition and bin 
packing techniques [l 13, [14], Xmap by Karplus based on 
the if-then-else DAG representation [17], the algorithm by 
Woo based on the notion of edge visibility [27], and the 
work by Sawkar and Thomas based on the clique partitioning 
approach [24]. The algorithms in the second class emphasize 
on minimizing the delay of the mapping solutions. This class 
includes MIS-pga-delay by Murgai et al. which combines 
the technology mapping with layout synthesis [21], Chortle- 
d by Francis et al. which minimizes the depth increase at 
each bin packing step [12], and DAG-Map by Cong et al. 
[3], [7] based on Lawler’s labeling algorithm. The mapping 
algorithms in the third class, including that proposed by Bhat 
and Hill [l], and that by Schlag, Kong, and Chan [26], have 
the objective of maximizing the routability of the mapping 
solutions. Although many existing mapping methods showed 
encouraging results, these methods are heuristic in nature, and 
it is difficult to determine how far the mapping solutions 
of these algorithms are away from the optimal solution.’ It 
has been of both theoretical and practical interest to CAD 
researchers to develop optimal FPGA mapping algorithms for 
general Boolean networks. 

This paper presents a theoretical breakthrough which shows 
that the LUT-based FPGA technology mapping problem for 
depth minimization can be solved optimally in polynomial 
time for general K-bounded Boolean networks. A key step 
in our algorithm is to compute a minimum height K-feasible 
cut in a network, which is solved optimally in polynomial time 
based on efficient network flow computation. Our algorithm 
also effectively minimizes the number of LUT’s by maximiz- 
ing the volume of each cut and by several post-processing 
operations. Based on these results, we have implemented an 

JT-based FPGA mapping package named FlowMap. We 
have tested FlowMap on a set of benchmark examples and 
compared it with other LUT-based FPGA mapping algorithms 
for delay optimization, including Chortle-d, MIS-pga-delay, 
and DAG-Map. FlowMap reduces the LUT network depth by 
up to 7% and reduces the number of LUT’s by up to 50% 
compared to the three previous methods. 

’ Some previous algorithms achieve optimal mapping for restricted problem 
domains: Chortle is optimal when the input network is a tree, Chortle-crf and 
Chortle-d are optimal when the input network is a tree and h’ 5 6, and DAG- 
Map is optimal when the mapping constraint is monotone, which is true for 
trees. 
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Fig. 1. Mapping a Boolean network to a K-LUT network (K  = 3). 

Our result makes a sharp contrast with the fact that the 
conventional technology mapping problem in library-based 
designs is “-hard for general Boolean networks [9], [18]. 
Due to the inherent difficulty, most conventional technology 
mapping algorithms decompose the input network into a 
forest of trees and then map each tree optimally [9], [18]. 
Such a methodology was also used in some existing FPGA 
mapping algorithms [ l l ] ,  [12], [14]. However, the result in 
this paper shows that K-LUT mapping can be carried out 
directly on general K-bounded Boolean networks to achieve 
depth-optimal solutions. 

The remainder of this paper is organized as follows. Section 
I1 gives a precise problem formulation and some preliminaries. 
Section I11 presents our depth-optimal technology mapping 
algorithm for LUT-based FPGA designs. Section IV describes 
several enhancements of our algorithm for area minimization. 
Experimental results and comparative study are presented in 
Section V. Extensions and conclusions are presented in Section 
VI. 

11. PROBLEM FORMULATION AND PRELIMINARIES 

A Boolean network can be represented as a directed acyclic 
graph (DAG) where each node represents a logic gate? and a 
directed edge (z,j) exists if the qutput of gate i is an input 
of gate j .  A primary input (PI) node has no incoming edge 
and a primary output (PO) node has no outgoing edge. We use 
input(v) to denote the set of nodes which are fanins of gate 
U. Given a subgraph H of the Boolean network, input(H) 
denotes the set of distinct nodes outside H which supply 
inputs to the gates in H. For a node v in the network, a K- 
feasible cone at v ,  denoted C,, is a subgraph consisting of U 
and its predecessors3 such that linput(C,) I 5 K and any path 
connecting a node in C, and v lies entirely in C,. The level 
of a node v is the length of the longest path from any PI node 
to U. The level of a PI node is zero. The depth of a network 
is the largest node level in the network. A Boolean network 
is K-bounded if linput(v)I 5 K for each node U. 

We assume that each programmable logic block in an 
FPGA is a K-input one-input lookup-table (K-LUT) that 
can implement any K-input Boolean function. Thus, each 

’In the rest of the paper gates and nodes are used interchangeably for 
Boolean networks. 

3~ is a predecessor of 2) if there is a directed path from U to v. 

K-LUT can implement any K-feasible cone of a Boolean 
network. The technology mapping problem for K-LUT based 
FPGA’s is to cover a given K-bounded Boolean network 
with K-feasible cones, or equivalently, K-LUT’s4. shows an 
example of mapping a Boolean network into a 3-LUT network. 
Note that we allow these cones to overlap, which means that 
the nodes in the overlapped region can be duplicated when 
generating K-LUT’s. In fact, our algorithm is capable of 
duplicating nodes automatically when necessary, in order to 
achieve depth optimization. A technology mapping solution 
S is a DAG in which each node is a K-feasible cone 
(equivalently, a K-LUT) and the edge (C,,C,) exists if U 

is in input(C,). Our main objective is to compute a mapping 
solution that results in the minimum delay. 

The delay of an FPGA circuit is determined by two factors: 
the delay in K-LUT’s and the delay in the interconnection 
paths. Each K-LUT contributes a constant delay (the access 
time of a K-LUT) independent of the function it implements. 
Since layout information is not available at this stage, we 
assume that each edge in the mapping solution contributes 
a constant delay. In this case, the delay is determined by the 
depth of the mapping solution, which is known as the unit 
delay model. We say that a mapping solution is optimal if its 
depth is minimum. The primary objective of our algorithm 
is to find an optimal mapping solution in terms of depth 
minimization, and the secondary objective is to reduce the 
number of K-LUT’s used in the technology mapping solution. 

Several concepts about cuts in a network will be used in 
our algorithm. Given a network N = ( V ( N ) ,  E ( N ) )  with a 
source 3 and a sink t, a cut ( X , x )  is a partition of the nodes 
in V ( N )  such that s E X and t E x. The node cut-size of 
( X , x ) ,  denoted n ( X , X ) ,  is the number of nodes in X that 
are adjacent to some node in x, i.e., 

n ( X , X )  = I{. : (z,y) E E ( N ) , x  E X and y E x}l 
A cut ( X , X )  is K-feasible if n ( X , X )  5 K. Assume that 
each edge (u,u) has a non-negative capacity c(u,v) .  The 
edge cut-size of ( X , Y ) ,  denoted e ( X , X ) ,  is the sum of the 

41f the input network is not K-bounded, it may not be covered with K- 
LUT’s directly. In this case, nodes in the network with more than K fanins 
may have to be decomposed before covering. However, we consider such a 
decomposition step as part of the synthesis procedure. 
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Fig. 2. A 3-feasible cut of edge cut-size 10, volume 9, and height 2. 

capacities of the forward edges that cross the cut, i.e., 

Throughout this paper, we assume that the capacity of each 
edge is one unless specified otherwise. The volume of a cut 
( X ,  y), denoted woZ(X,X), is the number of nodes in x, i.e., 
woZ(X, x) = 1x1. Moreover, assume that there is a given label 
E(w) associated with each node 'U. The height of a cut ( X ,  x), 
denoted h ( X , X ) ,  is defined to be the maximum label in X, 
i.e., 

h ( X , X )  = max{l(x) : 5 E X }  

Fig. 2 shows a cut ( X , x )  in a network with given node 
labels, where n ( X , X )  = 3, e ( X l x )  = 10, h ( X , X )  = 2, 
and woZ(X,x) = 9. 

111. AN OPTIMAL LUT-BASED FPGA MAPPING 
ALGORITHM FOR DEPTH MINIMIZATION 

Our algorithm is applicable to any K-bounded Boolean 
network. Given a general Boolean network as input, if it is 
not K-bounded, there are a number of ways to transform 
it into a K-bounded network. For example, the Roth-Karp 
decomposition [23] was used in [20] to obtain a K-bounded 
network. We use the algorithm DMIG presented in [3], which 
is based on the Huffman coding tree construction [16], to 
decompose each multiple input simple gate5 into a tree of 
two-input simple gates. According to the result in [3], such 
a decomposition procedure increases the network depth by 
at most a small constant factor. The reason for carrying out 
such a transformation is that if we think of FPGA technology 
mapping as a process of packing gates into K-LUT's, then, 
smaller gates will be more easily packed, and the mapping 
algorithm will be able to pack more gates along critical paths to 
one K-LUT, resulting smaller depth in the mapping solution. 
This argument is justified by our experimental results in Table 
111 shown in Section V. 

In the rest of this paper, we shall assume that the input 
networks are K-bounded networks. Although we transform 

'We can always obtain a simple gate network by representing each complex 
gate in the sum-of-products form and then replacing it  with two levels of 
simple gates. 

Fig. 3. Constraint on the number of inputs to LUT is not monotone (I< = 3). 

an input network into a network of two-input simple gates, 
the optimality of our algorithm does not depend on the fact 
that each node in the given Boolean network is a two-input 
simple gate. The optimality of our mapping result holds as 
long as the input network is a K-bounded network, in which 
the gates need not to be simple. 

The fundamental difficulty in the LUT-based FPGA map- 
ping is that the constraint on the number of inputs of a 
programmable logic block is not a monotone clustering con- 
straint. A clustering constraint r is monotone, if knowing 
that a network H satisfies r implies that any subnetwork of 
H also satisfies r [19]. For example, if we assume that the 
constraint for each programmable logic block is the number 
of gates it may cover in the original network, it is a monotone 
clustering constraint. Unfortunately, limiting the number of 
distinct inputs of each programmable logic block is not a 
monotone clustering constraint. For example, Fig. 3 shows 
a network of three distinct inputs, which is 3-feasible. But the 
subnetwork consisting of nodes t ,  v and 20 has four distinct 
inputs, which is not 3-feasible. Clustering (or, similarly, map- 
ping) for a monotone clustering constraint r is much easier 
because if a subnetwork H does not satisfy the constraint 
r, we can conclude that H is not a part of any cluster. It 
was shown that Lawler's labeling algorithm [19] can produce 
a minimum depth clustering solution in polynomial time 
whenever the clustering constraint is monotone. The DAG- 
Map algorithm developed by Cong et al. [3], [7] modified 
Lawler's algorithm and applied it to the LUT-based FPGA 
mapping problem. Although it achieved encouraging results 
for depth minimization, it was shown that the DAG-Map 
algorithm is not optimal [3]. 

The mapping algorithm presented in this paper successfully 
overcomes the difficulty due to the nonmonotone clustering 
constraint in LUT-based FPGA technology mapping. The 
algorithm runs in two phases. In the first phase, it computes 
a label for each node which reflects the level of the K-LUT 
implementing that node in an optimal mapping solution. In the 
second phase, it generates the K-LUT mapping solution based 
on the node labels computed in the first phase. 

3.1. The Labeling Phase 
Given a K-bounded Boolean network N ,  let Nt denote the 

subnetwork consisting of node t and all the predecessors of 
t. We define the label of t ,  denoted Z(t), to be the depth of 
the optimal K-LUT mapping solution of Nt. Clearly, the level 
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(a) (b) (C) 

Fig. 4. Computing the label l ( t )  of node t (K  = 3). (a) The partial network. (b) Construction of Nt and the highest 3-feasible cut. (c) Determining l(t). 

of the K-LUT rooted at t (if exists) in the optimal mapping 
solution of N is at least Z(t), and the maximum label of all the 
PO’s of N is the depth of the optimal mapping solution of N .  

The first phase of our algorithm computes the labels of all 
the nodes in N, according to the topological order starting 
from the PI’S. The topological ordering guarantees that every 
node is processed after all of its predecessors have been 
processed. For each PI node U, we assign l(u) = 0. Suppose 
t is the current node being processed. Then, for each node 
U # t in Nt,  the label Z ( U )  must have been computed. By 
including in Nt an auxiliary node s and connecting s to all 
the PI nodes in Nt,  we obtain a network with s as the source 
and t as the sink. For simplicity we still denote it as Nt .  Fig. 
4(a) shows part of a Boolean network in which gate t is to be 
labeled, and Fig. 4(b) shows the construction of the network 
Nt.  Let LUT(t) be the K-LUT that implements node t in an 
optimal K-LUT mapping solution of Nt. Let 13 denote the set 
of nodes in LUT(t) and X denote the remaining nodes in Nt.  
Then, ( X , x )  forms a K-feasible cut between s and t in Nt 
because the number of inputs of LUT(t) is no more than K. 
Moreover, let U be the node with the maximum label in X ,  
then, the level of LUT(t) is Z ( U )  + 1 in the optimal mapping 
solution of Nt.  Recall the definition of the height of a cut in 
Section II, we have h (X,X)  = 1(u). Therefore, in order to 
minimize the level of LUT(t) in the mapping solution of Nt, 
we want to find a minimum height K-feasible cut (X, x) in 
Nt.6 In other words, 

Z(t) = min h (X,X)  + 1. (1). 
(X,s?) is K-feasible 

Based on the above discussion, we have 
Lemma I: The label Z(t) computed by Eq. ( I )  gives the mini- 

0 
Fig. 4(b) and (c) illustrate our labeling method. Since in 4(b) 

there is a minimum height 3-feasible cut in Nt of height 1, 

mum depth of any mapping solution of Nt .  

6We exclude the cuts ( X , x )  where 7 contains a PI node. Our algorithm 
to be shown later on guarantees that such kind of cuts are not generated. 

we have Z(t) = 2, and the optimal K-LUT mapping solution 
of Nt is shown in Fig. 4(c). 

There is no existing algorithm for computing a minimum 
height K-feasible cut efficiently. One important contribution 
of our work is that we have developed an O(Krn) time 
algorithm for computing a minimum height K-feasible cut 
in Nt ,  where rn is the number of edges in Nt.  First, we show 
that the node labels defined by our labeling scheme satisfy the 
following property. 

Lemma 2: Let E(t) be the label of node t ,  then l(t) = p or 
l( t)  = p + 1, where p is the maximum label of the nodes in 
input( t). 

Proofi Let t’ be any node in input (t). Then for any cut 
(X,x) in Nt, either t’ E X ,  or ( X , x )  also determines a 
K-feasible cut (X’,X’) in Nt, with h(X‘,X’) 5 h(X,X) ,  
whereX’=XnV(Nt , )  a n d X ’ = X n V ( N t , ) . I f  ( X , x ) i s  
a minimum height K-feasible cut in Nt,  then, in the former 
case, we have Z(t) = h ( X , X ) + l  2 Z(t’)+l, i.e., Z(t) > Z(t’); 
and in the latter case, we have Z(t’) - 1 5 h(X’,X’) 5 
h ( X , X )  = Z(t) - 1, which implies Z(t) 2 Z(t’). (Note this 
proves that the label of any node cannot be smaller than those 
of its predecessors.) Therefore, l ( t )  2 p. 

On the other hand, since the network N is K-bounded, 
linput(t)I 5 K. Therefore, (V(Nt) - {t} ,{ t})  is a K- 
feasible cut. Because each node in V(Nt) - {t} is either in 
input(t) or is a predecessor of some node in input(t), the 
maximum label of the nodes in V ( N t )  - {t} is p. Therefore, 

0 
According to Lemma 2, our algorithm first checks if there 

is a K-feasible cut ( X t , x t )  of height p - 1 in Nt .  If there 
is such a cut, we assign Z(t) = p and node t can be packed 
with the nodes in wt into one K-LUT in the second phase of 
our algorithm for generating the mapping solution. Otherwise, 
the minimum height of the K-feasible cuts in Nt is p and 
(V(Nt) - {t} ,{ t})  is such a cut. In this case, we assign 
l ( t )  = p + 1 and we shall use a new K-LUT for node t 
in the second phase. 

h(V(Nt) - {t}, {t}) = p, i.e., Z(t) 5 p + 1. 
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(a) (b) (C) 

Fig. 5. Network transformations in computing a minimum height A--feasible cut in Nt (K = 3). 

Whether Nt has a K-feasible cut of height p - 1 or not 
can be tested efficiently using the following method. Let p be 
the maximum label of the nodes in input(t), which is also 
the maximum label of the nodes Nt - {t}. We first apply a 
network transformation on Nt that collapses all the nodes in 
Nt with label 2 p, together with t, into the new sink t‘. Denote 
the resulting network as N;, we have the following result. 

Lemma 3: Nt has a K-feasible cut of height p - 1 if and only 
if Ni has a K-feasible cut. 

Proof: Let Ht denote the set of nodes in Nt that are 
collapsed into t’. 

If Ni has a K-feasible cut (X’,x’), let X = XI, and 
X = (x’ - {t’}) U Ht ,  then clearly ( X , X )  is a K-feasible 
cut of Nt.  Since no node in X’ (= X) has label p or larger, 
we have h ( X , X )  5 p - 1. Moreover, according to Lemma 
2, l ( t )  2 p, which implies h ( X , X )  2 p - 1. Therefore, 

On the other hand, if Nt has a cut (X,x) of height p - 1, 
then X cannot contain any node of label p or higher. Therefore, 
Ht C x. In this case, (X, (x - Ht ) U { t’}) forms a K-feasible 

For example, Fig. 5(a) shows the network Nt for node 
t in Fig. 4(a), and Fig. 5(b) shows the induced network 
Ni. In order to determine if Ni has a K-feasible cut, we 
apply another standard network transformation, called the 
node-splitting transformation, which reduces the node cut-size 
constraint to an edge cut-size constraint by splitting nodes 
into edges, so that we can use misting edge cut computation 
algorithms [SI, [lo]. Specifically, we construct a network N,” 
from N; as follows. For each node w in Ni other than s and 
t’, we introduce two nodes w1 and v2 and connect them by 
an edge (211, w2) in N,”, which is called a bridging edge. The 
source s and sink t’ are also included in N,”. For each edge 
(5, w) in Ni,  there is an edge (s, wl) in N,”; and for each edge 
(w , t ’ )  in Ni,  there is an edge (w2,t’) in N,”. Moreover, for 
each edge (U, w) in Ni (U # s and w # t’), we introduce an 
edge (UZ, w1) in N,”. We assign the capacity of each bridging 
edge to be one, and the capacity of each non-bridging edge 

- 

h ( X , X )  = p - 1. 

cut of N;. 0 

to be infinity. Fig. 5(c) shows the resulting N,” obtained from 
Ni in Fig. 5@). According to the result in [lo] (pp. 23-26), 
we have 

Lemma 4: Ni has a K-feasible cut if and only if N,“ has a 
cut whose edge cut-size is no more than K .  U 

Based on the Max-flow Min-cut Theorem [SI, [lo], N,“ has 
a cut whose edge cut-size is no more than K if and only if the 
maximum flow7 between s and t’ in N,” has value no more 
than K. Since we are only interested in testing if the maximum 
flow is of value K or smaller, we apply the augmenting path 
algorithm in N,” to compute a maximum flow. (For the basic 
concepts of network flow and the details of the augmenting 
path algorithm, see [SI, [lo].) Since each bridging edge in N,” 
has unit capacity, each augmenting path in the flow residual 
graph of N,” from s to t’ increases the flow by one unit. 
If we can find K + 1 augmenting paths, then the maximum 
flow in N,” has value more than K ,  and we can conclude 
that N,” does not have a cut ( X ” , F )  with e(X”,x”) 5 K. 
Otherwise, the residual graph is disconnected before we find 
the (K + 1)th augmenting path. We can find a cut (XI’, x”) 
of edge-cut size no more than K in N,“ by performing a depth 
first search starting at the source s, and including in X” all 
the nodes which are reachable from s in the residual graph. 
Since finding an augmenting path takes O(m) time, where m 
is the number of edges in the residual graph of N,” (which 
is in the same order as the number of edges in Nt) ,  we can 
determine in O(Km) time whether N,” has a cut of edge cut- 
size no more than K and find one if such a cut exists. Such a 
cut (XI’, x“) in N,” induces a K-feasible cut (XI, F) in Ni,  
which in turn gives a minimum height K-feasible cut (X, x) 
in Nt.’ Based on the above discussions, we have 

Theorem 1:  A minimum height K-jeasible cut in Nt can be 
found in O(Km) time, where m is the number of edges in Nt . 0 

Applying Theorem 1 to each node in N in the topological 
order in the labeling phase, we have 

III this paper, a flow always means a flow from the source to the sink. 
*It is clear that for the resulting cut ( X ,  x) in Nt , x does not contain any 

PI nodes since any outgoing edge of the source s in N,“ has infinite capacity. 
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Corollary I :  The labels of all the nodes in N can be computed 
in O(Kmn) time, where n and m are the number of nodes and 

In fact, the result in Theorem 1 can be generalized for 
computing the minimum height K-feasible cut in a general 
network with arbitrary node labels and edge capacities as 
follows. 

Theorem 2: Given a general network N with a non-negative 
integer capacity defined on each edge and a non-negative inte- 
ger label dejined on each node except the sink. For anzposi- 
tive integer K ,  a minimum height K-feasible cut ( X , X )  can 
be found in O(m . min{K, fi} . log L )  time, and a mini- 
mum height cut ( X , x )  with e ( X , x )  _< K can be found in 
O(mn log(n*/m) log L )  time, where n and m are the number 
of the nodes and edges in N ,  respectively, and L is the number 

The proof and the detailed algorithm can be found in [4]. 
This result has been used for delay-optimal K-LUT technology 
mapping under arbitrary net-delay models [6] .  

edges in N ,  respectively. 0 

of different node labels. 0 

3.2. The Mapping Phase 
The second phase of our algorithm is to generate the K -  

LUT’s in the optimal mapping solution. Let L be the set of 
gates, which are to be implemented using K-LUT’s. Initially, 
L contains all the PO nodes. We process the nodes in L one 
by one. For each node Y in L, assume that (X,, xu) is the 
minimum height K-feasible cut in N, that we have computed 
in the first phase by the labeling algorithm. We generate a K- 
LUT w‘ to implement the function of gate w, using the input 
signals from X ,  to x,. That is, the K-LUT Y’ includes all 
the gates in T, and input (U’) = input ( r,). (Since the cut 
is K-feasible, we have linput(X,)I 5 K.) Then, we update 
the set L to be ( L  - {w})U input (w’). It is possible that a 
gate w belongs to both xv and Tu for two different gates ‘U 

and U in L. In this case, gate w is automatically duplicated 
and is included in both K-LUT’s w’ and U’. It is also possible 
that no K-LUT is generated for a gate w since it has been 
completely covered by the K-LUT’s generated for some of 
its successors. In general, a K-LUT has to be generated for a 
gate w if w belongs to input (U’) of some K-LUT U’ which 
has been generated, since its output signal is required by w’ 
as input. 

The second phase ends when L consists of only PI nodes of 
the original network. It is clear that at the end of the execution 
we get a network of K-LUT’s which is logically equivalent 
to the original network. 

Our minimum depth LUT-based FPGA mapping algorithm, 
named FlowMap, is summarized in Fig. 6. Based on the above 
discussions, we have 

For any K-bounded Boolean network N ,  the 
FlowMap algorithm produces a K-LUT mapping solution with 
the minimum depth in O(Kmn) time, where n and m are the 
number of nodes and edges in N .  

Pro08 By induction one can easily show that for any 
node w in N, if a K-LUT w’ is generated for w in the second 
phase, then the level of w’ in the mapping solution is no more 
than Z(v), which is the depth of the optimal mapping solution 
for N,. Since any mapping solution for N induces a solution 

Theorem 3: 

for N,, Z(w) is also the best possible depth for the K-LUT 
generated for w in any mapping solution for N .  Therefore, the 
mapping solution for N generated by the FlowMap algorithm 
is optimal. Moreover, since the labeling phase takes O(Kmn) 
time and the mapping phase takes O(n + m) time, the total 

0 
In the current LUT-based FPGA architecture, the typical 

value of K is 4 or 5. Moreover, if the average number of 
fanins (or fanouts) of the nodes in N is bounded by a constant 
(which is two in our implementation), we have m = O(n) .  
Therefore, the complexity of the FlowMap algorithm is O(n2) 
in practice. 

Note that in a network of n nodes, there are O ( n K )  K -  
feasible cuts. An exhaustive enumeration will resulting in 
a pseudo polynomial time algorithm of complexity O(nK) .  
Our algorithm, on the other hand, is strongly polynomial with 
respect to K ,  thus it is much more efficient. 

complexity of FlowMap is O(Kmn). 

IV. ENHANCEMENT OF THE FLOWMAP 
ALGORITHM FOR AREA OPTIMIZATION 

The secondary objective of our technology mapping al- 
gorithm is area optimization, i.e., to minimize the number 
of K-LUT’s in the mapping solution. In FlowMap, area 
optimization is considered by maximizing the volume of 
each cut during the mapping process and by post-processing 
operations for K-LUT reduction. 

4.1.  Maximizing the Cut Volume During Mapping 

According to the discussion in the preceding section, for 
each node t in the input network N, the FlowMap algorithm 
computes a minimum-height K-feasible cut ( X ,  x) in Nt 
and the nodes in w will be packed into one K-LUT t’ if a 
K-LUT is generated to implement t. In general, the minimum- 
height K-feasible cut is not unique. Intuitively, the larger 
v o l ( X , x )  = 1x1 is, the more nodes we can pack into the 
K-LUT t’, and the fewer K-LUT’s we use in total. Therefore, 
our algorithm wants to maximize the volume of the cut during 
the minimum height K-feasible cut computation. 

According to Lemmas 3 and 4, finding a minimum height 
K-feasible cut ( X ,  x) in Nt is reduced to finding a K-feasible 
cut (XI, x’) in Nl? which is further reduced to finding a cut 
( X ” , F )  with e(X”,X”) 5 K in N,”. According to the 
transformations in the preceding section, it is easy to see that 
voZ(X’,X’) = ~(woZ(X”,x”) - e ( X ” , F )  + l), and if the 
number of nodes with the maximum label in Nt is P, then 
woZ(X,x) = woZ(X’,x’) + P. Note that for a given Nt,  
P is a constant. Therefore, v o Z ( X , x )  is maximized when 
wol(X’ ,F)  is maximized, and wol(X’ ,F)  is maximized 
when woI(X”, x”) -e(X”, x”) is maximized. Thus, we want 
to find a cut (X”,x”) in N,” such that e ( X ” , F )  5 K 
and woZ(X”, x”) - e(X”,  x”) is maximum. Therefore, we 
want to find a min-cut in N,” (i.e.. a cut (X”,x”) with the 

9Assume that the minimum height of the K-feasible cuts in Nt is p - 1. 
Otherwise, (V( Nt ) - { t }, { t } )  is a minimum height IT-feasible cut in Nt , 
which is trivial to compute. 
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minimum e ( X ” , X ” )  of the maximum volume.’o First, we 
give the following characterization of a maximum volume 
min-cut. 

Lemma 5: There is a @que maximum volume min-cut in any 
netw_ork. Moreover, i f ( X ,  X )  is the maximum~olume min-cut and 
(Y,Y)  is another min-cut differentfrom ( X , X ) ,  then X C Y .  

Let ( X , X )  and ( Y , y )  be two min-cuts of a 
given network N .  Then, ( X  n Y , x  U F) is also a min-cut. 
If ( X , x )  is a maximum volume min-cut, we have 1x1 2 
IX U 51, i.e., P Y .  Moreover, 
if (Y ,Y)  is also a maximum volume min-cut, then X = 7, 
which implies X = Y. U 

Our algorithm computes a maximum volume min-cut 
(x”,XII) in N,” as follows: we first compute a maximum 
flow f in N,”, and obtain the flow residual graph Rf. We 
then perform a depth-first search in Rf from the source s to 
find all the nodes reachable from s. These nodes (including 
s) form the set X”, while all the other nodes form the set 
X”. The next lemma shows that the min-cut computed by our 
algorithm indeed has the maximum volume. 

Lemma 6: Let Rf be the residual graph of a maximumjlow 
f. Let X be the set of nodes in Rf reachable from the source 
s, and x be the set of the remaining nodes. Then, ( X , x )  is a 
maximum volume min-cut. 

Proof: According to the Max-flow Min-cut Theorem 181, 
[IO], ( X ,  X )  is a min-cut. Let (Y,F) be the maximum volume 
min-cut. According to Lemma 5 ,  If Y # X ,  then Y c X, and 
there is a node w E X - Y .  Since (Y ,y )  is also saturated by f ,  
and w E P, w is not reachable from s, which is a contradiction. 
0 

Pro05 

x, which implies X 

- 

Combining Theorem 1 and Lemma 6, we have 
Theorem: A maximum volume min-cut in N,“ can be found 

in O(Km)  time, where m is the number of edges in N t .  0 
Therefore, FlowMap maximizes the number of gates cov- 

ered in each K-LUT by maximizing the volume of each 
min-cut in N,”. As a result, area minimization is also achieved 
during depth-optimal mapping in FlowMap. 

4.2. Postprocessing Operations for K-LUT Reduction 
In the preceding subsection, we have described the tech- 

niques of minimizing the number of K-LUT’s during the 
depth-optimal mapping. After obtaining a K-LUT mapping 
solution using the FlowMap algorithm, we want to further 
reduce the number of K-LUT’s used in the mapping solution 
without increasing the depth. 

In [3], two depth-preserving operations were developed to 
minimize the number of K-LUT’s in the mapping solutions of 
DAG-Map. One is called the predecessor packing. If a K-LUT 
U has a fanin K-LUT w, w is fanout-free and (Znput({u, w})l 5 
K, then w can be merged into U. The predecessor packing 
operation is shown in Fig. 7. Another operation is called the 
gate decomposition. If a K-LUT U has two fanin K-LUT’s w 
and 20, both are fanout-free, and linput({w,w})l 5 K, then 
w and 20 can be merged into one K-LUT that has a single 

lo T ~ I  is another reason to compute a min-cut (instead of any cut with 
e ( X ” ,  X “ )  5 K) in N,”: For every signal across the cut in Nt,  we need to 
generate the signal using a K-LUT. Therefore, minimizing the node cut-size 
in Nt will also lead to reduction of the number of IT-LUT‘s. 

algorithm FlowMap 
/* phase 1: labeling network */ 
for each PI node v do 

T := list of non-PI nodes in topological order. 
while Tis  not empty do 

I ( v )  := 0 

remove the first node r from T.. 
construct the network N I ;  
letp = max(l(u) : U  E inpuf(r) 1; 
transform N ,  into 
transform N‘, into KfJ as follows: 

by collapsing all nodes in N I  with label p into r: 

split every node in ( x : x E A’;, x # s, x # f ) into two 
and connect them with a bridging edge of capacity 1; 

assign all non-bridging edges capacity -; 

usingthe augmenting path algorithm; 

X, := It);  I ( r )  : = p  + 1 

injuce %cut (X, 2) in NI from the cut (X”, 2”) in 
X I  : = X ;  I ( r )  : = p  

compute a cut (x”, X“) in N”, s.t. e (x”, 2’’) I K 

if (r. X ” )  is not found in 

else 

then 

endif 
endwhile; 
I* phase 2: generate K-LUTs */ 
L := list of PO nodes; 
while L contains non-PI nodes do 

take a non-PI node v fmm L; 
generate a K-LUT v‘ to implement the function of v 

L := (L - [ v )) U inpur(v’) 
such that inpur (v’) = input ( X, ); 

endwhile 
end-algorithm; 

Fig. 6. Pseudocode of the FlowMap algorithm. 

fanout to U, providing that we can carry out the Roth-Karp 
decomposition [23] on U with respect to its input w and w. The 
gate decomposition operation is shown in Fig. 8. Clearly, these 
two operations only take local information into consideration 
when reducing the K-LUT’s. 

In this subsection, we want to generalize the idea of pre- 
decessor packing so that instead of packing U with one of its 
fanins into a K-LUT, we try to pack a set of its predecessors 
(including U), denoted P,, into a single K-LUT. Fig. 9 
illustrates the new operation, which is called the $ow-pack. 
Clearly, we need to guarantee the condition that linput(P,)I 5 
K in order to carry out the packing. Let M be the current 
mapping solution and Mu be the subnetwork of M consisting 
of K-LUT U and all its predecessors. Then, P, can be packed 
into a single K-LUT if and only if (V(M,) - P,, Pu) forms a 
K-feasible cut in Mu. Moreover, the larger lP,l is, the more 
K-LUT’s we reduce in the mapping solution M. Therefore, 
we want to find a K-feasible cut with the maximum volume 
in Mu. The preceding subsection shows that a maximum 
volume min-cut can be computed efficiently. However, our 
experimental results showed that using maximum volume 
min-cut for K-LUT reduction is less effective due to the 
following reason. The resulting K-LUT network produced 
by the FlowMap algorithm is usually much denser than the 
initial 2-input network. Consequently, in many cases, Mu has 
a unique min-cut (V( Mu) - {U}, {U}). We need to find larger 
K-feasible cut to overcome this problem. 

Since there are only O ( n K )  different K-feasible cuts in 
a network of size n, a maximum-volume K-feasible cut can 



a b  c d  e f  a b  c d  e f  
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abed e f 

Fig. 7. Predecessor packing (h' = 5). 

a b  c d  e f g  c a b  e f g  d c a b e f g  d 

Fig. 8. Gate decomposition ( K  = 5). 

=3 

also be determined in O(nK)  time by enumerating all the K -  
feasible cuts. However, this method is too expensive when n 
is large, even for K = 5. Therefore, we have developed a 
heuristic algorithm. 

We define the rank of a cut (X,x), denoted T ( X , X ) ,  to 
be an ordered pair < n(X,W), -wol(X,x) >. The cuts can 
be ordered according to their ranks under the lexicographic 
ordering, i.e., for any two cuts (X,x) and (Y ,P) ,  r ( X , X )  > 
r(Y,Y) if n ( X , x )  > n(Y,F), or n ( X , X )  = n(Y,P) and 
w o l ( X , x )  < voZ(Y,B). Clearly, the maximum volume min- 
cut has the smallest rank. 

Given a K-LUT network M and a K-LUT U, our algorithm 
iteratively computes a sequence of cuts in Mu whose rank 

is monotonically increasing, and at each step, we minimize 
the increase of the rank of the cut. There are two reasons to 
minimize the rank. First, we want to limit the increase of the 
node cut-size at each step since we are interested only in K -  
feasible cuts. Second, for the cuts of the same node cut-size, 
the smaller the rank is, the larger volume the cut has. 

Specifically, we start with the maximum volume min-cut 
(XO, x~), which has the minimum rank. In the ith iteration 
(i 2 1). we compute a new cut (Xi,Xi) from the previous 
cut (Xi-1,Xi-l) in the sequence as follows. 

be the 
nodes in Xi-1 that are adjacent to some node in xi-1. To 
compute (Xi, Xi), we first collapse all the nodes in Ti-1 into 

- 
- 

Let n(X+I,Xi-l)  = ki-1, and let w 1 , w 2 ,  ..., 
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5xpl  (104)l 26 3 I 2 4 3  

TABLE I 
COMPARISON WITH CHORTLE-D AND DAG-MAP 

2 5 3  
Ssym (200) 
9symml  (191) 
C499 (658) 
C880 (548) 
aIu2 (393) 
a h 4  (726) 
apex6 (779) 
apex7 (247) 
count (216) 
des (3263) 
duke2 (392) 
misex l  (57) 
rd84 (141) 
rot (647) 
vg2 (120) 
z4mI (48) 

Total 

63 
59 

382 
329 
227 
500 
308 
108 
91 

2086 
241 

19 
61 

326 
55 
25 

4906 

5 
5 
6 
8 
9 
10 
4 
4 
4 
6 
4 
2 
4 
6 
4 
3 
87 

61 5 
58 5 

207 5 
243 8 
169 8 
305 10 
266 4 
91 4 
81 4 

1433 6 
192 4 

15 2 
43 4 

292 6 
4 6 4  
17 3 

3543 85 
Comparison 1+50.4% +4.8% I +8.6% +2.4% 

We also tested the above three algorithms on the inpu 

61 5 
58 5 

154 5 
232 8 
162 8 
268 10 
257 4 
89 4 
76 3 

1308 5 
187 4 
15 2 
43 4 

268 6 
45 4 
13 3 

3261 83 
1 1 

ietworks used by 
DAG-Map in [3]. The results showed that compared to FlowMap, DAG- 
Map used 5.6% more 5-LUT’s and had 1.2% larger network depth, while 
Chortle4 used 52.2% m m  SLUT‘S and had 10.7% larger network depth. 
FlowMap produced consistent better results than the other two algorithms. 

the sink U. Denote the reduced network as MA. Moreover, let 
M;(j )  denotes the network obtained from M t  by collapsing 
wj (1 5 j 5 ki- 1) into the sink U. We compute the maximum 
volume min-cut (Y,,Fj) in ~ : ( j )  for every j ,  1 5 j I 
ki-1. Let k, be the minimum node cut-size of these cuts. 
Moreover, among those cuts that have node cut-size k,, let 
(Y,y) be the one of maximum volume. Let X, = Y, and 
X, = V ( M ~ >  - X,, we accept (X,,Xi) as the resulting cut 
of the ith iteration. 

It can be shown [4] that the cut (Xi, Ti) has the following 
properties: 

- 

- 
(1) WO~(X~,X*) > vol(Xa-1, - Xi-1); 
(2) n(X,,_x,) > ~(Xd-A-1); ancl 
(3) r(X,,Xa) 5 r(X,X) for any cut (X,X) such that 

Therefore, the cut computed at each step is locally optimal. 
This iterative procedure ends when at some step 1, (Xl, Xl)  

is not K-feasible. The last K-feasible cut, (Xl-l,Xl-~), 
computed in the sequence, is used in the flow-pack algorithm 
such that Pu = Xl-1. Since the node cut-size is monotonically 
increasing, we have the number of iterations E 5 K. Moreover, 
each iteration consists of at most K maximum volume min-cut 
computations, each of time complexity O(Km) (Theorem 4). 
Therefore, the time complexity for carrying out the flow-pack 
algorithm at each node is bounded by O(K3m), where m is 
the number of edges in the K-LUT network. 

The flow-pack algorithm is implemented as a pst-proc- 
essing step of FlowMap. During the post-processing phase, 
we first carry out the gate-decomposition operation. (In fact, 
we carry out a maximum set of gate-decomposition oper- 
ations simultaneously by computing a maximum cardinal- 

X C Xa-1. 

TABLE II 
COMPARISON WITH MIS-PGA-DELAY ALGORITHM 

MIS-pgadelay FlowMap 
#LuT’s depth #LuT’s depth Circuit 

21 22 3 5xpl  
Ssym 
9symml  
c 4 9 9  
C880 
alu2 
a h 4  
apex6 
apex7 
count 
des 
duke2 
misex l  
rd84 
Tot 

vg2 
z4mI 
Total 
Comparison 

7 3 
7 2 

199 8 
259 S 
122 c 
155 11 
274 5 

95 4 
81 4 

1397 11 
164 c 

17 2 
13 ? 

322 5 
39 4 
10 4 

3182 9c 
+9.8% +7.1’?4 

60 
55 
68 

124 
155 
253 
238 
79 
31 

1310 
174 
16 
46 

234 
29 

5 
2899 

I 

5 
5 
4 
8 
9 
9 
5 
4 
5 
5 
4 
2 
4 
7 
3 
2 

84 
1 1 

ity matching among all pairs of gates which are eligible 
for gate-decomposition. Details of the matching based gate- 
decomposition algorithm can be found in [3].) Then, we apply 
the flow-pack operation to each K-LUT U in the mapping 
solution so that U is collapsed with a maximal subset of its 
predecessors into a single K-LUT. 

The advantage of the flow-pack operation is clear: the 
flow-pack operation takes the information about the entire sub- 
network Mu into consideration, while the predecessor packing 
examines only the nodes adjacent to U locally. Therefore, in 
general flow-pack leads to more substantial reduction of the 
number of K-LUT’s. Our experimental results show that the 
flow-pack operation alone reduced the number of K-LUT’s 
by 13.5% on average. 

v. EXPERIMENTALRESULTS 

We have implemented the FlowMap algorithm and its 
preprocessing and post-processing steps using the C language 
on Sun SPARC workstations. We used input/output routines 
and general utility functions provided by MIS [2] in our 
implementation. Given a general Boolean network as input, 
we first decompose it into a 2-input network of simple gates 
as described in [3]. We then apply the FlowMap algorithm to 
obtain a minimum depth K-LUT mapping solution. Next, we 
perform a matching-based gate-decomposition procedure on 
the K-LUT network, followed by the flow-pack operation to 
reduce the number of K-LUT’s in the mapping solution. We 
chose the size of the K-LUT to be K = 5, reflecting, e.g., 
the XC3000 FPGA family produced by Xilinx [28]. We tested 
FlowMap on a number of MCNC benchmark examples and 
the results were compared with those produced by Chortle-d 
[13], MIS-pga-delay [21], and DAG-Map [3]. The results are 
shown in Tables I and 11. 

In Table I, we used the initial networks provided by Robert 
Francis, which were used by Chortle-d to obtain the results 



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1,  JANUARY 1994 

60 5 
55 5 
68 4 

124 8 
155 9 
253 9 
238 5 
79 4 
31 5 

1310 5 
174 4 
16 2 
46 4 

234 7 
29 3 
5 2 

2899 84 
1 1 

TABLE III 
IMPACT OF DECOMP~SITTON METHODS ON ~~APPING RESULTS 

64 5 
56 5 
84 5 

108 9 
143 11 
252 11 
238 6 
72 4 
31 5 

1314 6 
148 5 
15 2 
46 5 

236 8 
29 4 

5 2 
2863 96 

-1.2% +14.3% 

DMIG-3 DMIG-4 DMG-5 
depth #LUT’s Circuit 

5xpl  
S s y m  

9 s y m m l  
c 4 9 9  
C880 
alu2 
aIu4 

apex6 
apex7 
count 

des 
duke2 

m i s e x l  
rd84 

vg2 
z 4 m l  
Total 

Comparison 

T O t  

depth #LuT’s depth # L W s  depth 
22 31 22 31 22 31 22 3 

reported in [13], for all the three algorithms. These initial 
networks were obtained by a sequence of technology inde- 
pendent area and depth optimization steps using MIS. (Since 
these networks are already 2-input networks, we did not 
apply our preprocessing algorithm for FlowMap.) Overall, the 
solutions of Chortle-d used 50.4% more 5-LUT’s and had 
4.8% larger network depth; the solutions of DAG-Map used 
8.6% more 5-LUT’s and had 2.4% larger network depth. Note 
that FlowMap always results in the mapping solution of the 
smallest depth. Moreover, in terms of the number of 5-LUT’s 
used in the mapping solutions, FlowMap is consistently better 
than Chortle-d for all examples, and is better than or as good 
as DAG-Map in most cases. 

In Table 11, we cited the results of MIS-pga-delay from 
[21] since we were unable to run the program directly. 
The FlowMap results were obtained by first synthesizing 
the original benchmarks using the MIS optimization script 
used by Chortle-crf [14] and DAG-Map [3] for technology- 
independent optimization, then applying the FlowMap algo- 
rithm for technology mapping. Since MIS-pga-delay combines 
logic synthesis and technology mapping, in several cases it 
produced mapping solutions of smaller depth than those of 
RowMap. However, overall MIS-pga-delay still used 9.8% 
more 5-LUT’s and had 7.1% larger depth. 

We have also evaluated the impact of the choices of multi- 
input gate decomposition methods on the mapping results. 
We used the DMIG algorithm [3] to decompose the ini- 
tial networks into two-, three-, four-, or five-input networks 
and applied FlowMap on the resulting networks. The initial 
networks for these decomposition algorithms are the same 
as those used to produce the FlowMap results in Table 11. 
We summarize the results in Table III. It can be seen that 
two-input decomposition gives the best depth results. On the 
other hand, multi-input decompositions use slightly fewer K -  
LUT’s in some cases. It was observed during the experiments 
that this reduction is achieved mainly by the post-processing 
operations. Intuitively, when the gates have larger number of 

67 5 
55 5 
84 5 

108 9 
146 11 
256 11 
237 6 
69 5 
31 5 

1343 7 
144 c 
20 3 
43 5 

29 3 
5 2 

2882 99 

223 a 

-0.6 +17.9% 

64 6 
56 6 
84 5 

108 9 
141 13 
263 13 
230 6 
70 5 
31 5 

1290 7 
142 6 
20 3 
42 5 

222 9 
29 5 
5 2 

2819 110 
-2.7% +31.0% 

TABLE IV 
EFFEcIlvENEsS OF THE FLOWMAP 

POST-PROCESSING PHASE FOR AREA M~IMIZATION 

Number of 5-LUT’s 
No Gate- Gate-Decomp. 

Post- Decomp. & Circuit Depth 

5xpl  3 24 24 22 
S s y m  5 76 71 60 

Ssymml 5 68 64 55 
c 4 9 9  4 80 76 68 
C880 8 133 133 124 
alu2 9 167 166 155 
alu4 9 279 277 253 

apex6 5 276 273 238 
apex7 4 88 88 79 
count 5 43 43 31 

des  5 1539 1521 1310 
duke2 4 196 193 174 

m i s e x l  2 20 18 16 
rd84 4 52 50 46 
rot 7 258 258 234 
vg2 3 32 31 29 

z 4 m l  2 5 5 5 
Total 84 3336 3291 2899 

processing Only How-Pack 

Comparison 1 -1.4% -15.1% 

fanins, the mapping phase may result in many unsaturated 
K-LUT’s, which gives more flexibility to the post-processing 
operations for further reduction of the number of K-LUT’s. 
However, this reduction is usually not worthwhile considering 
the substantial increase in the depth of the mapping solutions. 

Finally, We have tested the effectiveness of the post- 
processing phase for area minimization. The results are shown 
in Table IV. The initial networks used for this experiment are 
the same as those used in Table 11. The post-processing phase 
reduced the number of K-LUT’s in the mapping solution by 
15.1%, and the flow-pack operation alone reduced the number 
of K-LUT’s (after gate-decomposition operation) by 13.5%. 

The experiments were carried out on a Sun SPARC IPC 
workstation (14.8 MIPS). For each benchmark example, our 
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system took less than one minute of CPU time (in most cases 
a few seconds). Therefore, it is much faster than the Boolean 
optimization based algorithms. 

VI. CONCLUSION AND FUTURE EXTENSIONS 
In this paper, we have presented a technology mapping 

algorithm named FlowMap for depth minimization in LUT- 
based FPGA designs, which is optimal for any K-bounded 
Boolean network. It is based on efficient computation of 
minimum height K-feasible cuts in a network. A number of 
area optimization techniques also allow FlowMap to reduce the 
number of K-LUT’s significantly. Compared to the existing 
LUT-based FPGA technology mapping algorithms for delay 
optimization, FlowMap reduces the depth of the LUT network 
by up to 7% and reduces the number of LUT’s by up to 50%. 
FlowMap takes less than one minute of CPU time for each of 
the benchmarks in our test suite. 

One extension is to use a more general delay model other 
than the unit delay model. For example, Chan, Schlag, and 
Kong [25] used the nominal delay model in FPGA designs 
where the interconnection delay of a signal net is estimated by 
the number of fanouts of the net. Their results showed that the 
nominal delay model estimates the interconnection delay quite 
well. Based on Theorem 2, we have generalized the FlowMap 
algorithm to perform delay-optimal mapping under arbitrary 
net-delay models, including the nominal delay model [6]. 

Another extension is to combine area and depth optimization 
in the mapping procedure. Note that the depth of every 
node is minimum in a FlowMap mapping solution, while 
in fact only the depths of the nodes on the critical paths 
need to be minimized to guarantee depth-optimal mapping. 
The slacks of the non-critical nodes can be utilized for area 
minimization without affecting the depth optimality. This 
method can be further extended to the general problem of 
area minimization under given depth constraint. Based on 
a set of depth relaxation operations defined for non-critical 
nodes, We have developed an algorithm that can produce a 
spectrum of area-optimized mapping solutions for different 
depth constraints, yielding smooth area and depth trade-off 
in LUT-based FPGA designs [5]. 

The area-optimal mapping problem for LUT-based FPGA 
designs is still open. Based on the concept of the maximum 
fanout-free cones, introduced in [5] we have developed a 
polynomial time algorithm for area-optimal K-LUT mapping 
without node duplication for any fixed K [5].  

ACKNOWLEDGMENT 

The authors thank Professor Jonathan Rose, Robert Fran- 
cis, and Rajeev Murgai for their assistance in the authors’ 
comparative study. 

REFERENCES 

[l]  N. Bhat. and D. Hill, “Routable technology mapping for FPGA’s,” in 
First Inr. ACMISIGDA Workshop on Field Programmable Gate Arrays, 
Feb. 1992, pp. 143-148. 

[2] R. K. Brayton, R. Rudell, and A. L. Sangiovanni-Vincentelli, “MIS: A 

multiple-level logic optimization,” IEEE Trans. Computer-Aided Design, 

[3] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG- 
map: Graph-based FPGA technology mapping for delay optimization,” 
IEEE Design and Test of Computers, pp. 7-20, Sept. 1992. 

[4] J. Cong and Y. Ding, “An optimal technology mapping algorithm for 
delay optimization in lookup-table based FPGA designs,” Tech. Rep. 
CSD-920022, UCLA Computer Science Dept., May 1992. 

151 J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA 
technology mapping,” in Proc. 30th ACMIIEEE Design Automation 
Conf., June 1993, pp. 213-218. 

[6] J. Cong, Y. Ding, T. Gao, and K. Chen, “An optimal performance-driven 
technology mapping algorithm for LUT based FPGA’s under arbitrary 
net-delay models,” in Proc. 1993 Inr. Conf. on Computer-Aided Design 
and Computer Graphics, Aug. 1993, pp. 599-603. 

[7] J. Cong, A. Kahng, P. Trajmar, and K. C. Chen, “Graph based FPGA 
technology mapping for delay optimization,” in ACM Int. Workshop on 
Field Programmable Gate Arrays, Feb. 1992, pp. 77-82. 

[8] T. Cormen, C. Leiserson, and R. Rivest, Algorithms. Cambridge, MA: 
MIT Press, 1990. 

[9] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and 
A. Wang, “Technology mapping in MIS,” in Proc. IEEE Int. Conf. 
Computer-Aided Design, 1987, pp. 1 1 6 1  19. 

[lo] L. R. Ford and D. R. Fulkerson, Flows in Nefworks. Princeton, N J  
Princeton Univ. Press, 1962. 

[ 111 R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping 
program for lookup table-based field programmable gate arrays,” in 
Proc. 27th ACMIIEEE Design Automation Conf., 1990, pp. 613-619. 

[12] R. J. Francis, J. Rose, and 2. Vranesic, “Technology mapping for delay 
optimization of lookup table-based FPGA’s,” in MCNC Logic Synthesis 
Workshop, 1991. 

[13] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of 
lookup table-based FPGA’s for performance,” in Proc. IEEE Int. Cor$ 
Computer-Aided Design, Nov. 1991, pp. 568-571. 

[14] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-cxf Fast technology 
mapping for lookup table-based FPGA’s,” in Proc. 28th ACMIIEEE 
Design Automation Conf., 1991, pp. 613-619. 

151 D. Hill, “A CAD system for the design of field programmable gate ar- 
rays,” in Proc. ACMIIEEE Design Automation Conf. 1991, pp. 187-192. 

161 D. A. Huffman, “A method for the construction of minimum redundancy 
codes,’’ in Proc. IRE 40, 1952, pp. 1098-1101. 

171 K. Karplus. “Xmap: A Technology mapper for table-lookup field- 
programmable gate arrays,” in Proc. 28th ACMIIEEE Design Automation 
Cor$, 1991, pp. 24CK243. 

181 K. Keutzer, “DAWN: Technology binding and local optimization by 
DAG matching,” in Proc. 24th ACMIIEEE Design Automation Conf., 

[19] E. L. Lawler, K. N. Levitt, and J. Turner, “Module clustering to 
minimize delay in digital networks,” IEEE Trans. Computers, vol C-18, 

[20] R. Murgai, et al., “Logic synthesis algorithms for programmable gate 
arrays,” in Proc. 27th ACMIIEEE Design Automation Conf., 1990, pp. 
620-625. 

[21] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, 
“Performance directed synthesis for table look up programmable gate 
arrays,’’ in Proc. IEEE Int. Conf. Computer-Aided Design, Nov. 1991, 

[22] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, 
“Improved logic synthesis algorithms for table look up architectures,” in 
Proc. IEEEInt. Conf. Computer-Aided Design, Nov. 1991, pp. 564-567. 

[23] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM 
J. Res. Devel., pp. 227-238, Apr. 1962. 

[24] P. Sawkar and D. Thomas, ‘Technology mapping for table-look-up 
based field programmable gate arrays,’’ in ACMISIGDA Workshop on 
Field Programmable Gate Arrays, Feb. 1992, pp. 83-88. 

[25] M. Schlag, P. Chan, and J. Kong, “Empirical evaluation of multilevel 
logic minimization tools for a field programmable gate array tech- 
nology,” inProc. 1st Int. Workshop on Field Programmable Logic and 
Applications, Sept. 1991. 

[26] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology 
mapping for lookup table-based FPGA’s,” in Proc. 1992 IEEE Int. Conf. 
Computer Design, Oct. 1992. 

[27] N. S. Woo, “A heuristic method for FPGA technology mapping based 
on the edge visability,” in Proc. 28th ACMIIEEE Design Automation 
Conf., 1991, pp. 248-251. 

[28] Xilinx, The Programmable Gate Array Data Book. San Jose, CA: 
Xilinx, 1992. 

pp. 1062-1081, NOV. 1987. 

1987, pp. 341-347. 

pp. 47-57, Jan. 1969. 

pp. 572-575. 



12 IEEE TRANSACXIONS ON COMPUTER-AIDED DESIGN OF INTUjRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 1. JANUARY 1994 

Jason (Jingsheng) Cong (S’SS-M’W) received the 
B. S .  degree in computer science from the Peking 
University in 1985. He received the M. S. degree 
and Ph. D. degree in computer science from the 
University of Illinois at Urbana-Champaign in 1987 
and 1990, respectively. 

Currently, he is an assistant professor in the 
Computer Science Department of University of Cal- 
ifornia, Los Angeles. From 1986 to 1990, he was a 
research assistant in the Computer Science Depart- 
ment of the University of Illinois. He worked at the 

Xerox Palo Alto Research Center in the summer of 1987. He worked at the 
National Semiconductor Corporation in the summer of 1988. His research 
interests include computer-aided design of VLSl circuits, fault-tolerant design 
of VLSl systems, and design and analysis of efficient combinatorial and 
geometric algorithms. He has published over fifty research papers in these 
fields. 

Dr. Cong received the Best Graduate Award from the Peking University 
in 1985. He was awarded a DEC Computer Science Fellowship in 1988. 
He received the Ross J. Martin Award for Excellence in Research from the 
University of Illinois at Urbana-Champaign in 1989. He received the National 
Science Foundation Research Initiation Award in 1991, and the National 
Science Foundation Young Investigator Award in 1993. He has served on the 
program committees of several VLSI CAD conferences. He was the chairman 
of the 4th ACWSIGDA Physical Design Workshop. 

Yuzheng Ding received the B. S. degree in com- 
puter science from Peking University, and the M. 
S. degree in computer science from Tsinghua Uni- 
versity, both in Beijing, China. Currently he is a 
research assistant in the Department of Computer 
Science of University of California, Los Angeles, 
where he is pursuing his Ph. D. degree. 

His research interests include computer-aided de- 
sign of VLSl circuits, design and analysis of data 
structu~s and algorithms, and database systems. 

Mr. Ding is a member of ACM. 


