
Habits of Deficient ASIC Design

Don Mills

LCDM Engineering

ABSTRACT

This paper will discuss many of my observations of habits that companies and engineers follow
that cause ASIC schedule slips and cost overruns. I will be addressing issues such as getting
specifications set in place, using the right tools (hard and soft), getting trained, and engineer
distractions.

SNUG San Jose 2000 Habits of Deficient ASIC Design2

1.0 Introduction

Any engineer who works in the industry for any amount of time encounters a variety of
problems that go along with the job. You may or may not have seen the situations discussed in
this paper. These are some of the experiences I have dealt with or observed while doing ASIC
design over many years.

2.0 You spend more time reading news groups, reading email, and checking
your stock accounts than you do designing your ASIC

The advent of the Internet has created awesome capabilities for the engineering world.
Data, reports, email, news groups, and web sites are now resources that contribute to successful
engineering. Unfortunately, with all this information comes the need to deal with information
overload. It can be easily justified in one’s mind that spending time keeping up on numerous
engineering news groups is part of the job. However, there are just too many groups to keep up
with on a regular basis. If you want to stay on top of your current design project, you will not be
able to follow many news groups with anything more than a cursory glance.

Email is another form of information diarrhea. It is important to keep up on your email to
be aware of all the company reorganizations, and who is now over what department. After a trip
away from the plant, what do you spend your first day back doing? Catching up on email.
Fifteen years ago what would you have done? You would have filled out an expense report,
responded to accumulated messages, and then gotten back to the project. I am not saying that
email is bad. Occasionally, you will receive a message that really needs your attention! It just
seems that there are lots of extraneous mailings, and if you never read them, you will be no worse
off. The tough part is knowing which ones need to be read now, and which ones can be put off
indefinitely.

As I work among many companies now, it seems that one of the most favorite pastimes of
engineers is to see how the stock market is doing. I fall into this category as well. I admit I like
to see how my picks are doing throughout the day. However, there is a difference between
checking, and studying out the next move. VHDL does not stand for Verify How Dell Looks.
Take a look, and then move on.

SNUG San Jose 2000 Habits of Deficient ASIC Design3

3.0 You start the design with the promise that you will soon be given a real
spec.

OR
I know what it needs to do. Why do I need to write a spec?

I am sure that this situation has never happened to anyone but me. Yeah, right!!! It is
completely amazing to see companies come up with an idea, and then set the schedule before
they have a specification of what they are really going to design. Maybe I am naive, but this
seems a little backwards to me. We are told to just start with the ideas in hand and the spec will
be along soon. Many designs are completed and sent to fab. The engineers then use the time
between fab sign off and prototypes received to write the spec for the chip they just completed.
No wonder 90% of the ASICs work as designed, but only 50% work in the system.

On the other hand, take the engineer who uses the napkin sketches and the white board
drawings as his spec. This situation is similar to the previous one. It creates an environment
prone to failure, with interface mismatches caused by failure to formally communicate via the
spec.

4.0 You have designers on your team that are not convinced that designing
with HDL (either VHDL or Verilog) is efficient, and they are determined to
prove their opinion with your design.

This is becoming less of an issue today than it has been in the past few years, but that
does not mean it has gone away. There are those designers who still look at the results of
synthesis and state, “I could have designed that circuit to be faster/smaller”. This is often true.
Given enough time, any one of us could take a design, study out optimal alternatives, and work
on bettering the design. The key word here is TIME. When designing one, two, four, eight (or
more) million gate designs, we don’t have the time to tweak every part of the design. Set the
constraints, and if the block meets the constraints, then move on . I cringe with terror when I get
assigned to a project with an engineer whose first line of circuit design is schematic capture (yes,
some of those engineers still exist). It’s like trying to swim with an anchor attached. To those
designers who still live in the schematic world, I say, “Why stop at the schematic level? If you
can make the design better in schematic, then you should be able to further improve it if you go
down to the transistor level. Or better still, go straight to the layout level. That’s where you will
see the real optimization. Sure, build your 2 million gate design at the transistor level.”

5.0 Your management hasn’t upgraded your workstations in years, and now
wants you to design a 2 million gate design with an HP700 or a Sun
SPARC10.

This happens way too much. Not only is management asking us to do the impossible
with an ancient workstation, but wants it accomplished in the six to nine month schedule he/she

SNUG San Jose 2000 Habits of Deficient ASIC Design4

reads in the trade magazines is now the standard. I heard a quote once (DAC 1997 Keynote
Address) that said something like...”an average engineer can design pretty good on an up-to-date
workstation, but it takes a top-notch engineer to accomplish the same task on an old, slow, low-
memory workstation.” Think of the brain power lost trying to work the old systems into
submission. Time is spent working scripts, breaking designs into smaller blocks, and waiting for
runs to finish. That same time would bring much more ROI if the engineer had up-to-date
workstations.

6.0 You assume that because it simulates correctly in RTL that the design
will work correctly after synthesis.

Please, please, please don’t make this assumption! The paper I presented at SNUG99
(co-authored with Cliff Cummings) documented a number of coding styles where the simulation
results differ before and after synthesis. Most of these differences can be avoided by
understanding the coding constructs that cause the differences, and then following a strict coding
standard that avoids these constructs. Additionally, verify your synthesis results. This must be
done with a variety of tools. No one tool can perform your full post-synthesis verification. Your
post-synthesis verification consists of two parts: timing verification and functional verification.
You will begin with static timing analysis, followed by formal verification, augmented with gate-
level simulation. I am not convinced yet that formal verification is ready to stand alone as the
complete back end functional verification tool. (Many engineers disagree with me.) But I am
ready to say that it should be a major part of the back end verification process.

7.0 TRAINING? What’s that? If we train our employees, they will just leave
the company.

I have been involved with companies that offer outstanding employee training programs.
I have also worked with companies in which employees were given such training limitations that
they would overrun the training budget just to take the company mandatory training courses
consisting of ethics training, security (anti-espionage) training, ESD training, time card training,
diversity training, ISO 9000 training, etc. The list goes on and on. Yet if an engineer petitioned
to obtain training regarding tools, methodology, or some other project-related training, the
answer was always the same: there was no budget for the training, nor could the projects afford
the loss of time while the engineer was away. How can some companies have such limited
foresight as to not provide a way for engineers to remain at the top of their skill and ability? As
to the loss of project development time while an engineer is away on training, if the training is
directly job related, the time gained by having a trained engineer will far exceed the time lost for
not training the engineer. Those not being trained are left to muddle through the tool
documentation, and then use trial and error to come up to speed. They often spend enormous
amounts of time working with the tool’s AE (AC at Synopsys) trying to figure out all the
nuances. They weary the AE with questions and problems that would have been answered in
training. Eventually the AE becomes reluctant to help. And then when they really need help, it’s
not there.

SNUG San Jose 2000 Habits of Deficient ASIC Design5

I was at one company that was working to become ISO certified. After attending the ISO
training class, I was given a stack of documents 2 feet high (no kidding) that I was required to
understand in order to meet the ISO requirements for my job. For labor, I was told that I could
charge up to two hours to the ISO training charge number to perform this task. Any additional
time required to prepare for the ISO audit was to be on my own time. These kinds of company
policies and practices become nothing but distractions for the job of engineering.

Granted, companies are not obligated to train you. Yet there are companies that provide
training opportunities, and even some companies that strongly encourage annual employee
technical training. On the other hand, some managers really fear that their trained employees will
move on. So what keeps an employee at his job? If employees are challenged by their
assignments, they are usually happy. If they feel comfortable with their co-workers and their
environment, they’ll be more likely to stay. A competitive salary is a big factor in employee
retention (are you always below the IEEE average?). And don’t forget the Golden Handcuffs.
Would you want to leave all your stock options behind?

Now, one recommendation: you are in charge of your own career. If you feel that you
need training or want it in a specific area, don’t wait for the company to come to you. Search out
opportunities on your own. Don’t sit around and complain about what the company is not doing.
Be proactive, not just reactive. When I got out of school and started work at my first engineering
job, I was assigned to work with a seasoned and very wise senior engineer, who became my
mentor. Among the things he taught me was that I had gone to engineering school “to learn how
to learn”. The engineer that stops learning new design processes and tools will become obsolete.

8.0 It’s only software. Why can’t any software engineer design ASICs with
HDL?

When a project is short on hardware HDL engineers, managers sometimes try to fill the
empty slots with software engineers. There are some software engineers who focused on the
hardware side of their field, and who are capable of coding HDL successfully. But generally
speaking, the methods used to optimize software are the most inefficient coding styles for HDL
coding. Take the following code shown in example 1:

if (cnt < 32) then
 cnt = cnt + 1
else
 <perform some function>

Example 1: inefficient HDL comparitor

From a software perspective, this approach is acceptable. From a hardware perspective, this
creates a much larger comparitor than is required. To code HDL, you’ve got to think
HARDWARE. If you think in software algorithms, you are destined to fail as an HDL designer.
A more efficient hardware approach is to compare just the significant bit, as shown in example 2:

SNUG San Jose 2000 Habits of Deficient ASIC Design6

if (cnt[5] = 1) then
 <perform some function>
else
 cnt = cnt + 1

Example 2: efficient HDL comparitor

This coding style must include comments to describe the algorithm being implemented.

9.0 Surely the tools from the vendors have been verified. This bug can’t be
from a buggy tool. The AE assures us that this is really a feature (at least
until the next release).

OR
EDA tools and vendor libraries change/update faster than the time it takes to
compile and synthesize your design.

This doesn’t happen very much, but occasionally I come across some goofy quirk in an
EDA tool. When I approach the AE, I am told that the tool is operating as defined. So, I write
scripts and modify my flow to deal with the tool, only to see the quirk go away with the next
release.

It has always been a big dilemma when, in the thick of a project, you get a tool update
from your EDA vendor, or a library update from your foundry. Do you upgrade so that you are
working with the latest greatest tools and libraries, or do you stay with the baseline that you have
been working with? You are familiar with the pitfalls and workarounds required with your
current environment, so why even consider moving to something else? What if there are
significant bug fixes in the new environment? What if there are new bugs that need to be found?

10.0 My tool AE said the problem is in the foundry’s library. The foundry’s
rep said the problem is the tool.

This world of EDA and ASIC is really one big love triangle, the players being the
engineers/designers, the foundry, and the tools. All three players must play together for success
to be achieved. The foundry uses the tools to generate libraries that are sent to their customer.
Their customer (engineers) will use the tools with the libraries to generate a finished product to
be sent back to the foundry for realization. It becomes imperative to the success of the design
that the foundry and the tool company are in sync with each other. One of the most difficult
situations to work through is when you are getting inconsistent results from your foundry and
your tool. You call your foundry rep and he claims that they have built their library per the spec
for the tool. You then call the tool rep and he figures the foundry didn’t follow the spec
correctly. Now what do you do?

SNUG San Jose 2000 Habits of Deficient ASIC Design7

 I had this situation occur to me once just before a trip to DAC. It just so happened that
at DAC, both the tool company’s and the foundry’s booths were right across the aisle from each
other. I got my contact from the tool company to sit down face to face with the foundry contact
(not a trivial feat), and I proposed a solution. At the time, they both agreed that the solution
would work and that it would be implemented. However, no change was implemented. I ended
up being the one to make the changes in my design and scripts.

11.0 Design reviews! I don’t need no stinking design reviews.

“Design reviews just get in the way of getting the project done. I have to spend two or
three days, maybe even a week getting all my material put together and distributed in preparation
for each review. And they’ll just change the design anyway.” Don’t forget that you’re not
designing in a vacuum. Your design has to work in a system with correct interfaces. And part of
the review is making sure that you have not misinterpreted the spec.

So what happens when a design review is held? There are two sides to consider here:
that of the reviewer and that of the reviewee. As a reviewer, don’t focus on or nit pick code that
works, but is coded with a different style than what you would have used. The review must focus
on functionality, timing, power, area, efficiency, system interface, and continuity with the system.
As the reviewee, don’t take the review as a personal attack. The review is a design review, not a
personal review or a personality review. Too many engineers become way too intimate with the
code they write, and become very offended when comments or recommendations are made about
their code.

12.0 We were scheduled 9 months for design, 2 months for test bench
generation, 2 weeks for scan insertion, and 4 weeks for foundry interface
(with a foundry that we have never worked with before).

How real is this? It happens over and over again. You start out with a decent amount of
time scheduled for implementation of the design. Test bench generation typically takes at least
the same amount of time as design implementation. And the automation of the scan insertion
makes it easy to underestimate the time needed for implementation. Additionally, if the design
was not built with scan insertion checks as part of the initial design flow, the time needed for
scan insertion can be months, as you go back to fix scan bugs, re-simulate, re-synthesize, and re-
verify. The complexity of the scan insertion process grows exponentially based on the number of
unique clock zones in your ASIC.

Finally, four weeks for foundry interface is very reasonable, if you are familiar with your
foundry and have worked with them before. However, if you are dealing with a foundry for the
first time, expect a learning curve. There will be many unwritten requirements and expectations.
And you’ll deal with this situation every time you go to a new foundry.

13.0 Conclusion

SNUG San Jose 2000 Habits of Deficient ASIC Design8

Another thing I gained from my mentor came at a time when I was having major
problems with my foundry. His response to the situation was a simple question back to me. This
question has helped me keep a reasonable perspective on the difficult situations that arise from
time to time while getting ASICs out the door. The question was “What is an engineer?” He then
answered his own question by stating that an engineer is nothing more than a problem solver. He
told me that I had problems to be resolved, and rather than complaining about how poor the
library or the tool was, or whatever the current external problem was, that I should work to
resolve the situation. I have since come to the realization that every tool, library, or design
environment comes with its own set of problems. Very seldom have I ever come across a
problem that couldn’t be resolved in some way.

	This paper will discuss many of my observations of habits that companies and engineers follow that cause ASIC schedule slips and cost overruns. I will be addressing issues such as getting specifications set in place, using the right tools (hard and soft
	I know what it needs to do. Why do I need to write a spec?
	I am sure that this situation has never happened to anyone but me. Yeah, right!!! It is completely amazing to see companies come up with an idea, and then set the schedule before they have a specification of what they are really going to design. Maybe
	
	OR

