
Embedded Hardware and Software Self-Testing
Methodologies for Processor Cores

Li Chen†, Sujit Dey†, Pablo Sanchez‡, Krishna Sekar†, and Ying Chen†

†Dept. of ECE, University of California at San Diego, La Jolla, CA 92093, USA
‡Dept. of Electronic Technology and System Engineering (TEISA), University of Cantabria, Santander, Spain

lichen, dey@ece.ucsd.edu

Abstract
At-speed testing of GHz processors using external testers may not
be technically and economically feasible. Hence, there is an
emerging need for low-cost, high-quality self-test methodologies,
which can be used by processors to test themselves at-speed.
Currently, Built-In Self-Test (BIST) is the primary self-test
methodology available and is widely used for testing embedded
memory cores. In this paper, we report our experiences in
applying a commercial BIST methodology to two processor cores
and analyze the problems associated with the current hardware-
based BIST methodologies. We propose a new software-based
self-testing methodology for processors, which uses a software
tester embedded in the processor memory as a vehicle for
applying structural tests. The software tester consists of programs
for test generation and test application. Prior to the test, structural
tests are prepared for processor components in the form of self-
test signatures. During the process of self-test, the test generation
program expands the self-test signatures into test sets, and the test
application program applies the tests to the components-under-test
at the speed of the processor. Application of the novel software-
based self-test method demonstrates its significant cost/fault
coverage benefits and its ability to apply at-speed test while
alleviating the need for high-speed testers.

1. Introduction
As the speed of microprocessors approaches the GHz range,

at-speed testing is becoming increasingly critical. However,
testers with speed matching the speed of GHz processors will be
increasingly costly. According to the 1997 Semiconductor
Industry Association Roadmap [1], if the current testing
techniques are to be continued, the test equipment cost can rise
towards $20 million. Moreover, due to the inherent inaccuracy of
testers, at-speed testing of high-speed processors may result in an
unacceptably high yield loss of 48% by 2012. To ensure the
economic viability of the industry to manufacture high-
performance processors, alternative testing techniques are needed.
Hence, the recent focus on self-testing, the ability of a circuit to
test itself. By generating the required test patterns on-chip and
applying the tests at the speed of the circuit, a GHz processor can
test itself without relying on high-speed, prohibitively expensive
external testers.

One of the most widely researched self-testing techniques is
built-in self-test (BIST) [2], which uses embedded hardware test
generators and test response analyzers to generate and apply test
patterns on-chip at the speed of the circuit, thereby eliminating the
need for an external tester. While embedded memory components
in processors widely use memory BIST techniques, the non-
memory (logic) parts of processors typically do not use BIST.
This is because while memory BIST performs well due to the
deterministic nature of the memory tests facilitated by the regular
structure of memory components, logic BIST remains impractical
for large designs due to its reliance on random test patterns.

An alternative to hardware-based self-testing techniques like
BIST is software-based self-testing. While computer systems are
regularly equipped with software programs to perform in-field
testing, the tests done are typically used for checking the
functionality of the system, but not for detecting manufacturing
defects. Functional validation suites have been regularly used to
perform manufacturing testing of processors. However, its
application relies on external testers and its results in terms of
manufacturing fault coverage are low, as functional tests are not
targeted at structural faults. Recently, researchers have started
investigating self-test techniques for processors using processor
instructions. Shen et al., and Batcher et al. have proposed
techniques for functional self-testing of processors [3][4]. Both
techniques rely on generating and applying random instruction
sequences to processor cores. In [5][6][7][8], the processor
functionality has been used for on-chip test pattern generation and
test response compaction. In [5] and [6], random operations and
operands are generated and applied to test the ALUs of DSP
cores. In [7] and [8], the processor is used to generate random test
patterns, and scan chains are used to apply the test patterns.

In this paper, to analyze the strength and the limitations of
current hardware-based self-testing techniques, we have applied a
state-of-the-art logic BIST technique to a simple processor core as
well as a complex, commercial processor core. Through these
applications, we demonstrate some of the general problems
associated with logic BIST, such as inability to provide high fault
coverage without extensive design changes on the circuit-under-
test. These problems can be elevated in the case of processors, as
processors are random-pattern-resistant due to their complex
controls.

Since the need for self-testing is most acute for high-
performance processors, we propose a new software-based self-
testing methodology for processors, which uses a software tester
embedded in the processor memory as a vehicle for applying
structural tests. The software tester consists of programs for test
generation and test application. The software-based approach has
the advantage of programmability and flexibility, which can be
used to generate desirable random test sets on-chip without any
hardware overhead. In addition, software instructions can enable
on-chip test application by guiding test patterns through the
complex control structure of the processor, rather than with the
help of scan chains and boundary-scan chains as is done in the
case of hardware-based logic BIST techniques.

To circumvent the low fault coverage associated with random
pattern testing of processors, our approach first determines the

This work is supported by MARCO/DARPA Gigascale Silicon Research
Center (GSRC).

structural test needs of processor components, which are usually
much less complex than the full processor, and hence much more
amenable to random pattern testing. At the processor level, the
instructions of the processor are used to apply the tests to each
component at-speed. Since the instructions satisfy the complex
control flow of the processor, the flow of test data to/from the
component under test will not be impeded, as in the case of
hardware BIST applying random patterns to the entire processor.

In the rest of the paper, we first evaluate the performance of a
hardware-based commercial logic BIST tool (LBIST) on two
processor cores. We will then describe the proposed software-
based self-testing methodology in Section 3. The performance of
the software-based approach is evaluated and compared to that of
LBIST.

2. Evaluating Hardware-Based Logic BIST
Techniques
We present our experience of applying a commercial logic

BIST tool (LBIST) to two processor cores: PARWAN and
PicoJava-II. Figure 1 shows the BIST structure inserted by
LBIST. Instead of relying on an external tester for applying tests
to the scan chains, LBIST generates test vectors on-chip using an
LFSR. The outputs of the LFSR are connected to the scan chains
through a phase shifter, which is designed to reduce the linear
correlation among scan chains. The outputs of the scan chains are
compressed on-chip using a MISR. Test points may be inserted to
improve the fault coverage.

As logic BIST relies on the application of random test
patterns, the design-under-test often has to be modified
extensively to be random pattern testable [9]. The next two
sections describe the application of LBIST on the two processor
cores, including all design changes needed for making the cores
BIST-ready.

2.1 Case study I: PARWAN processor core
We first applied LBIST on a simple accumulator-based

microprocessor named PARWAN [10] (Figure 2). It includes the
following components: Arithmetic Logic Unit (ALU),
Accumulator Unit (AC), Controller (CTRL), Instruction Register
Unit (IR), Program Counter Unit (PC), Memory Address Register
Unit (MAR), Shifter Unit (SHU), and Status Register Unit (SR).
The synthesized version of PARWAN contains 1785 equivalent

NAND gates and 53 flip-flops. The data bus is 8-bit wide, shared
by both data_in and data_out. The address bus is 12-bit
wide. Accesses to both buses are controlled by tri-state buffers.

Next we describe the design changes we have made on
PARWAN in order to make the application of LBIST effective.
As the MISR signatures can be corrupted by undefined values,
logic BIST tools do not accept circuits with possible bus-
contention problems [9]. Moreover, LBIST is not able to insert
boundary scan to a circuit containing bi-directional pins. Hence,
before applying LBIST, we had to manually modify the circuit
description of PARWAN. The modifications include: (1) splitting
all bi-directional pins into separate I/O pins, (2) replacing all tri-
state buffers with selectors, and (3) inserting test points to
improve the testability of the circuit.

Table 1 shows the results of LBIST on PARWAN in
comparison with the full scan results. The rows contain the
following information: (1) statistics on the original PARWAN
circuit, (2) statistics on the modified PARWAN circuit, (3) the
results of full scan on the modified circuit, (4) the results of
LBIST on the modified circuit, and (5) the results of LBIST on
the modified circuit with test points (3 control points and 11
observe points). For the two LBIST runs, we divided the 53 flip-
flops of PARWAN into 5 scan chains. LBIST automatically
chooses an 18-bit LFSR as the pattern generator. The columns
contain the following information: the areas of the circuits in
terms of the number of equivalent NAND gates, the delay of the
circuits in ns, the number of test patterns applied during each test,
and the final fault coverage on collapsed faults. Notices that the
areas reported do not include routing area.

As can be observed from the table, both full scan and LBIST
techniques can achieve comparable fault coverage without the
help of additional test points. However, LBIST requires much
higher area and delay overhead than full scan due to the need for
numerous BIST circuitry, such as the LFSR, the MISR, the
boundary scan chain, the phase shifter, and the BIST controller.
Note that the fault coverage of LBIST can be significantly
enhanced by the use of test points.

2.2 Case study II: PicoJava-II processor core
PicoJava-II (Figure 3) is a soft microprocessor core provided

by Sun Microsystems through the Sun community licensing
program. This implementation of the Java Virtual Machine is a
stack-based 32-bit microprocessor with 300 instructions. It
contains six pipeline stages, and can execute up to 4 instructions
in one cycle. The instruction set includes most of the Java
bytecodes and some C-oriented instructions. The core users can
configure the instruction/data caches and the FPU.

The synthesizable description of PicoJava has 46376 lines of
Verilog code and includes 7 technology-dependent embedded
memory blocks. To obtain the gate-level implementation, we had
to modify all the synthesis and timing scripts to be able to adapt to
the synthesis tool and the technology library used in our design
flow.

The synthesized PicoJava-II core contains 167 I/O ports and
6801 flip-flops. Figure 3 shows component areas in terms of the
number of equivalent NAND gates. The total area is 127887 for
the logic components and 313989 for the embedded memory

MISR

B
ou

nd
ar

y
S

ca
n Core

Design

Fu
ll

S
ca

n

Test Point
Decoder

LFSR

Phase Shifter (XOR gates)

Figure 1. LBIST

ALU

SHU

SR

AC IR

CTRL

PC

MAR

MEM

Figure 2. PARWAN processor core

Table 1. Parwan: full scan vs. LBIST
Area

[gate count]
Delay
[ns]

Test
patterns

Fault
Coverage

Original. ckt 888 70.06 -- --
Modified ckt 812 82.50 -- --
Full Scan* 909 82.87 640 89.39%
LBIST* 2185 104.42 32767 88.69%
LBIST** 2246 104.42 32767 97.34%

* On the modified circuit
** On the modified circuit with test points

components. The total number of faults in the logic blocks is
532,527. Using a commercial fault simulator, it takes 20 seconds
to simulate one test cycle, if all faults are included in the fault list.

Table 2 shows the results of applying full scan and LBIST on
the logic part of the PicoJava processor core. The values of area
overhead and fault coverage reported in the table are with respect
to the logic part of the processor core.

Full scan is able to achieve a fault coverage of 95.54%, with
an area overhead of 11.13%. The area overhead is an under-
estimate, as it does not include the routing overhead of scan-
chains.

Prior to the application of LBIST, several design changes
had to be made in order to make the PicoJava processor core
BIST-ready. First, embedded memories were bypassed with scan
flip-flops in the test mode [9], as otherwise they could become
sources of undefined values (X-generators), leading to the
corruption of MISR signatures. In addition, a number of
combinational loops, which did not exist in the functional mode,
were formed when random test patterns were applied. The signals
in a combinational loop may toggle when the loop is activated,
causing the generation of undefined values. The combinational
loops can be broken with the help of control points. The breaking
of the combinational loops, as well as the insertion of the memory
bypass circuits, had to be performed manually.

In the first LBIST experiment (LBIST-1), an LFSR of size 24
was used. A primitive polynomial was chosen by LBIST to
configure the LFSR. The number of random test patterns used was
32,767. The fault coverage was unacceptably low (58.81%), with
an area overhead higher than that of full scan. The increase in the
area overhead was caused by the insertion of the BIST circuitry,
as well as the design modifications required for making PicoJava
BIST-ready.

To improve the testability of the design, we performed the
second LBIST experiment (LBIST-2), in which the BIST circuitry
in LBIST-1 was augmented by 100 control points and 100
observe points. This leads to a significant boost in the final fault
coverage (an additional 23.72% compared to LBIST-1). The

insertion of the test points leads to a slight increase in area.
We have also investigated the effect of other BIST

parameters on the resulting fault coverage, including the LFSR
size and the number of random patterns used in test.

In the third LBIST experiment (LBIST-3), the BIST
configuration in LBIST-2 was modified so that a larger LFSR (32-
bit) was used, leading to a fault coverage improvement of 0.40%
over LBIST-2. As the increase in the LFSR size does not lead to a
significant improvement in fault coverage, we did not increase the
size of the LFSR further.

In the final LBIST experiment (LBIST-4), the exact same
BIST configuration in LBIST-2 was used, but the number of
random patterns applied was increased from 32,767 to 1,000,000.
This leads to a fault coverage improvement of 1.58% over LBIST-
2. Compared to LBIST-2, LBIST-4 caused a slight increase in
area overhead, as a larger pattern counter was used.

The results in Table 2 show that LBIST was not able to
achieve a very high fault coverage on PicoJava, even after the
insertion of a large number of test points. The fault coverage can
be improved by increasing the size of the LFSR and the number of
random patterns. However, the improvement is marginal. Aside
from the low random-pattern-testability of a large design, the
mechanism used for breaking the combinational loops could also
contribute to the low fault coverage of LBIST on PicoJava.

In summary, although it is an attractive solution to the
problem of at-speed test, the application of LBIST on the two
processor cores shows its potential disadvantages. Processors, due
to their complex control structures, are highly random-pattern-
resistant. An acceptable fault coverage cannot be achieved by
simply applying random test patterns to the entire processor, as
certain internal control signals need to be set properly to ensure
the free flow of test data. Design changes are often needed to
make the processors random-pattern-testable, adding to the
area/delay overhead. In addition, certain violations that do not
happen in the functional mode, such as bus-contentions and the
forming of combinational loops, could occur during the
application of random test patterns. To avoid these violations,
additional design changes need to be made, making the insertion
of logic BIST even more difficult.

3. A Software-Based Self-Test Methodology
Targeting at Structural Faults
Unlike hardware-based self-testing, software-based testing

enables the use of random pattern generation programs with
various configurations without introducing any test overhead.
Moreover, software instructions will be able to guide test patterns
through the complex processor, avoiding the blockage of the test
data due to non-functional control signals.

In this paper, we propose a novel software-based processor
self-testing methodology that delivers structural tests to
components using processor instructions. Our self-testing scheme
includes two steps. The test preparation step includes the
generation of realizable tests for components of the processor and
the encapsulation of component tests into self-test signatures. The
self-testing step involves the use of a software tester, which
consists of an on-chip test pattern generation program, a test
pattern application program, and a test response analysis program,
as shown in Figure 4. If self-test signatures are used, an on-chip

Bus Interface Unit (335)

Powedown,
Clock, & Scan
Unit (102)

Stack
Manager
Unit (3061)

Floating Point
Unit and control
(23365)

ICRAM
(135037)

ITAG
(13731)

DCRAM
(89260)
DTAG

(42374)

Stack
Cache

ucode
ROM FP-ROM

Integer
Unit
(83637)

Instr.
Cache
Unit
(32165)

Data
Cache
Unit
(8884)

Embedded memory Source: Sun Microsystems

Figure 3. PicoJava-II processor core

Table 2. PicoJava-II: full scan vs. LBIST
Test pointsLFSR

size
MISR
size Control Observe

Area
overhead

Test
patterns

Fault
coverage

Full Scan -- -- -- -- 11.13% 12,736 95.54%
LBIST-1 24 41 0 0 13.06% 32,767 58.81%
LBIST-2 24 41 100 100 13.29% 32,767 82.53%
LBIST-3 32 41 100 100 13.30% 32,767 82.93%
LBIST-4 24 41 100 100 13.30% 1,000,000 84.11%

test generation program emulates a pseudo random pattern
generator and expands the signatures into test patterns. The test
patterns are applied to components by an on-chip test application
program at the speed of the processor. The test application
program also collects the test responses and saves them to
memory. If desired, the test responses can be compressed into
response signatures using a test response analysis program. The
responses are stored into memory and can later be unloaded and
analyzed by an external tester.

 By targeting the structural test need of less complex
components, the proposed method has the fault coverage
advantage of deterministic structural testing. Since component test
application and response collection are done with instructions
instead of with scan chains, it requires no area or performance
overhead, and the test application is performed at-speed. Most
importantly, by shifting the role of external testers from applying
tests to loading test programs and unloading responses, it enables
at-speed testing of GHz processors with low speed testers.

In the following sections, we describe the above two steps in
detail using the PARWAN processor (Figure 2).

3.1 Component test preparation
During the component test preparation step, we develop

structural tests for individual components of the processor, such
as the ALU, the SHU, and the PC. Component tests can either be
stored or generated on-chip. If tests are to be generated on-chip,
we characterize the test need of the component by a self-test
signature, which includes the seed (S) and the configuration (C)
of a pseudo random number generator, as well as the number of
test patterns to be generated (N). The self-test signatures can be
expanded on-chip into test sets using a pseudo random number
generation program. Multiple self-test signatures may be used for
one component if necessary. A low-speed tester can be used to
load the self-test signatures or the pre-determined tests to the
processor memory prior to the application of test.
3.1.1 Instruction-imposed constraints

One of the challenges of component test preparation lies in
the generation of realizable component tests. That is, the
component tests must be deliverable with the software tester.
Since the delivery of component tests relies on processor
instructions, it is impossible to deliver some test patterns. Thus,
component tests must obey constraints imposed by the processor
instruction set.

We will next use one component of the PARWAN processor,
SHU, to illustrate the types of constraints imposed by the
instruction set.

A block diagram of SHU is shown
in Figure 5. The input signals include
data_in, in_flag, and the shifting
signals from the controller. in_flag
include 4 bits, v, c, z, and n, which
denote overflow, carry, zero, and
negative, respectively. The shifting
signals includes two bits, asl and asr,
which denote arithmetic-shift-left and
arithmetic-shift-right.

The constraints imposed by the processor instruction set can
be divided into two types. We define constraints which can be
specified in a single time frame as spatial constraints, and
constraints spanning over several time frames as temporal
constraints.

For SHU, the spatial constraints imposed by the processor
instruction set include the following:

1. asl and asr cannot be both 1,
2. z and n must be consistent with data_in, and
3. v = xor(c, sign_bit(data_in)).
The temporal constraints on SHU are imposed by the

sequence of instructions that apply tests to SHU. The sequence
includes three steps: (1) loading data to be shifted into the
accumulator (AC), (2) shifting data stored in AC and store the
shift result temporarily in AC, and (3) storing the shift result into
memory for later analysis. As shown in Figure 6, the application
of one test pattern involves three passes through the SHU. To
account for fault aliasing, temporal constraints need to be
modeled during component test generation.

Tupuri et al. and Vishakantaiah et al. have addressed the
issue of constraint test generation in [11][12][13]. They have
proposed a methodology to systematically extract structural
constraints for components of a processor from the processor
HDL description. In the future, we will investigate on enhancing
such structural constraint extraction methods to extract constraints
imposed by the instruction set, as is required in our work.
3.1.2 Constraint modeling

Having described the constraints imposed by the processor
instruction set, we will now describe the modeling of these
constraints during component test preparation.

If component tests are generated by ATPG, spatial
constraints can be specified during test generation with the aid of
the ATPG tool. As an alternative, spatial constraint can be
specified with a virtual constraint circuit proposed in [11].

If random tests are used for components, random patterns can
only be used on independent inputs. In the case of SHU, these
would be data_in and c. Inputs such as z, n, and v can be
derived from these inputs. It is inconvenient to assign random
patterns to instruction-related signals, such as the shifting signals.
Therefore, they are fixed when random patterns are applied to
other inputs. The fixed value of the instruction-related signals may
be changed if necessary.

The temporal constraints of SHU can be modeled using the
three-phase sequential circuit shown in Figure 7. The three phases
correspond to the three instructions for applying tests to SHU,
which are loading data into AC, shifting, and storing AC content
to memory. Notice that the data inputs and flag inputs of SHU are
only connected to the primary inputs in the first phase, when the
AC content is loaded from the memory. The data outputs of SHU
are only connected to the primary outputs in the third phase, when
the test response is stored to memory. The shifting signals in these
two phases are set to 0’s. The v and c flags are set to 0’s in the
second and the third steps, since neither the shift instructions nor
the store instruction can set them to 1. At any phase, the inputs to
SHU must also obey the spatial constraints we have described
before.

On-chip test
generation
program

Self-test
signature

Program execution

Test
application
program

Test resp.
analysis
programI-C

ac
he

D
-C

ac
he

Test
patterns

Test
response

Response
signature

S
of

tw
ar

e
Te

st
er

Figure 4. Self-test methodology

SHU
asl

in_flag
(vcnz) data_in

data_outout_flag

4

4

8

8
asr

Figure 5. SHU

ALU

1. Loading to AC

ALU

2. Shifting

ALU

MEM

3. Storing to MEM

MEM

AC AC AC

SHU SHU SHU

Figure 6. Hardware paths involved in testing the SHU

3.2 On-chip self-test
The second step of our software-based self-test scheme is on-

chip self-test, which uses an embedded software tester for the on-
chip generation of component test patterns, the delivery of
component tests, and the analysis of their responses (Figure 4).
3.2.1 Test generation program

If tests are to be generated on-chip, we expand the
component self-test signatures determined during component test
preparation into test sets using a pseudo random number
generator. Figure 8 illustrates this process. A software program
emulating a hardware LFSR could be used as the pattern
generator. The software LFSR leads to no test overhead and can
be reused to generate any LFSR configurations. The configuration
of the LFSR is determined by a self-test signature, which includes
the characteristic polynomial of the LFSR (C), the initial state of
the LFSR (S), and the number of test patterns to be generated (N).

3.2.2 Test application program
Since the component tests are developed under the

constraints imposed by the processor instruction set, it will always
be possible to find instructions for applying the component tests.

However, special care
needs to be taken for collecting
component test response. Data
outputs and status outputs have
different observability and
should be treated differently
during response collection.
Here we illustrate the
propagation of status outputs
with the ALU (Figure 9) in the

PARWAN processor.
The ALU has four status outputs, v (overflow), c (carry), z

(zero), and n (negative), which can be observed by the instruction
sequence in Figure 10. Instructions 0 – 2 apply a test vector to
ALU. The status outputs become available after instruction 1.
Instructions 3 – 11 create an image of the status outputs in the
accumulator. First, an all-one vector is loaded to the accumulator.
If v is one, the all-one vector is left untouched. Otherwise, a zero
replaces the one at the 4th bit from right. Other status bits are
treated similarly. After the execution of instruction 11, an image
of the status output is created in the accumulator. Instruction 12
stores this image to memory.

In general, though there are no instructions for storing the
status outputs of a component directly to memory, the image of

the status outputs can be created in memory using conditional
instructions. This technique can be used to observe the status
outputs of any components.

3.3 Experimental results
In this section, we report the application of the software-

based self-test methodology described above. Before we report
our experimental results, we describe the test evaluation
framework we have developed and used to evaluate the fault
coverage achieved by the software test program.

To evaluate the fault coverage of a test program on the
processor under test, we have established the test evaluation
framework shown in Figure 11. The assembler takes the test
program and prepares a VHDL test bench containing the
initialized instruction memory and data memory. The VHDL
simulator takes the design description, runs the test bench, and
captures the input signals to the processor. These are the test
vectors to be applied during fault simulation. Finally, the fault
simulator computes the fault coverage.

During component test preparation, pseudo random tests
were prepared for the ALU. A total of 205 test patterns were used.
The expected fault coverage is 98.81%. Deterministic tests were
prepared for SHU and PC. 40 test patterns were used for SHU and
12 for PC. The expected fault coverage is 99.27% for SHU and
85.00% for PC. We were unable to obtain full coverage for these
components due to the existence of constraints imposed by the
instruction set. No tests were generated for other components, as
they are not easily accessible through instructions. We expect
them to be tested intensively during the test for the targeted
components.

Table 3 shows the statistics on various programs contained in
the software tester, including the test pattern generation program
and the test application programs for ALU, SHU, and PC. For
each program, we show the number of instructions included in the
program, the size of the program in bytes, and the execution time
in the number of processor cycles. A low-speed tester can be used
to load the test programs into the processor memory. During the
application of the self-test program, an external tester is not
required to be hooked up to the processor for supplying the test

4 8

8

0
0

4 8

8

vc=00
4 8
vc=00

0
0

1. Loading to AC 2. Shifting 3. Storing to MEM

8
REG

SHU

REG

SHU SHU

REG

0/1
1/0

Figure 7. Circuit for modeling temporal constraints on SHU

Q = S
Do N times
 begin
 AC = Bitwise-and(C,Q);
 New_bit = Parity(AC);
 Q = New_bit:(Q >> 1);
 end

Self-test signature: (C, S, N)

(a) Hardware implementaion (b) Software implementation

Q1 Q2 Q3

D Q D Q D Q

C1 C2

New_bit

C3

Figure 8. Hardware and software implementation of LFSR

data_out

8 8

8

in2in1

4
out_flag
(vczn) 3

alu_codeALU

Figure 9. ALU

0 lda addr(y) //load AC
1 add addr(x)
2 sta data_out //store AC
3 lda 11111111
4 brav ifv //branch if overflow
5 and 11110111
6 label ifv brac ifc //branch if carry
7 and 11111011
8 label ifc braz ifz //branch if zero
9 and 11111101
10 label ifz bran ifn //branch if negative
11 and 11111110
12 label ifn sta flag_out

Figure 10. Observing status outputs

Fault coverage

RTL desc.

AssemblerAssembler

VHDL test bench

VHDL simulationVHDL simulation

Gate level netlist

Capture
processor inputs Fault simulationFault simulation

Test program

Figure 11. Test evaluation framework

patterns and monitoring the test responses. Therefore, the tester
time is not determined by the execution time, but by the size of
the test programs, which in this case is only 1129 bytes.

The complete self-test program achieved an overall fault
coverage of 91.42% on the original PARWAN circuit, which
includes tri-state buffers. Notice that the proposed method does
not require the processor outputs to be monitored by an external
tester during the application of self-test. The test response is
collected after the test by unloading the component test response
stored in memory. In general, if a conventional fault simulator is
used for evaluating the fault coverage of the proposed method,
only primary outputs related to memory should be observed. This
includes address outputs, data outputs, and read/write signals for
the memory.

The component fault coverages, along with the processor
fault coverage, are shown in Table 4, in which DP I/F denotes the
datapath interface, and CPU I/F denotes the CPU interface. The
component fault coverages are obtained from the full-processor
fault simulation, not from the component fault simulation. Notice
that the datapath interface (DP I/F) mainly consists of buses and
tri-state buffers. The fault coverage for this unit is low as its
testability is reduced by the presence of the tri-state buffers [14].

In summary, the proposed method is able to achieve high
fault coverage without any test overhead. Most importantly, it
enables at-speed testing without any requirement on the
performance of the external tester. Since the test is applied in the
normal operational mode of the processor, we avoid the problem
of creating bus contentions and combinational loops as in the case
of scan-based test.

To prove the effectiveness of our software-based self-test
methodology on large designs, we are now in the process of
applying it to the PicoJava processor core. A self-test program of
2050 instructions has been applied to its floating-point unit,
which has an area of 23365 equivalent NAND gates. A fault
coverage of 81.18% has been achieved on the floating-point unit.

4. Conclusion
In conclusion, we have demonstrated some of the

disadvantages associated with hardware-based logic BIST
techniques by applying a commercial BIST tool to two processor
cores. In addition to the test overhead required by the insertion of
BIST structures, hardware-based logic BIST techniques must be
accompanied by design changes required for making the
processor-under-test random-pattern-testable. We have proposed a
novel software-based self-testing technique that enables at-speed
self-testing using the functionality of the processor under test.
Structural faults are targeted during the self-test, while the
functionality of the processor is used as a vehicle for applying
structural tests. We have demonstrated the effectiveness of the
proposed method on a simple microprocessor. The advantages of
the proposed technique include enabling at-speed testing with low
speed testers, as well as achieving high fault coverage without
sacrificing area or performance. By breaking up a complex system

into manageable pieces and targeting at individual components,
we expect to apply this technique on large processors and systems
in the future. Currently, by applying it to a large industrial
processor like the PicoJava processor core, we are expecting to
extend the proposed self-test technique to address issues related to
complex architectural features, such as pipelining and super-
scalar.

References
[1] The National Technology Roadmap for Semiconductors,

Semiconductor Industry Association, 1997.
[2] V.D. Agrawal et al., “Built-in self-test for digital integrated

circuits,” AT&T Technical Journal, Mar. 1994, pp. 30.
[3] J. Shen and J. A. Abraham, “Native mode functional test

generation for processors with applications to self test and
design validation,” Proceedings of the International Test
Conference 1998, Washington, DC, Oct. 1998, pp. 990-999.

[4] K. Batcher and C. Papachristou, “Instruction randomization
self test for processor cores,” Proceedings of the 17th IEEE
VLSI Test Symposium, Dana Point, California, April 1999,
pp. 34 – 40.

[5] J. Rajski and J. Tyszer, Arithmetic Built-in Self-Test for
Embedded Systems, Prentice Hall, 1998.

[6] K. Radecka, J. Rajski, and J. Tyszer, “Arithmetic built-in
self-test for DSP cores,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol.16,
no.11, Nov. 1997, pp. 1358 – 69.

[7] S. Hellebrand and H.-J. Wunderlich, “Mixed-mode BIST
using embedded processors,” Proceedings of the
International Test Conference 1996, Washington DC, Oct.
1996, pp. 195 – 204.

[8] R. Dorsch and H.-J. Wunderlich, “Accumulator based
deterministic BIST,” Proceedings of the International Test
Conference 1998, Washington DC, Oct. 1998, pp. 412 –
421.

[9] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.
Hassan, and J. Rajski, “Logic BIST for large industrial
designs: real issues and case studies,” Proceedings of the
International Test Conference 1999, Atlantic City, New
Jersey, Sept. 1999, pp. 358 – 367.

[10] Z. Navabi, VHDL: Analysis and modeling of digital systems,
New York, McGraw-Hill, 1993.

[11] R. Tupuri and J. A. Abraham, “A novel functional test
generation method for processors using commercial ATPG,”
Proceedings of the International Test Conference 1997,
Washington DC, Nov. 1997, pp. 743 – 752.

[12] P. Vishakantaiah, J. A. Abraham, and D. G. Saab,
“CHEETA: Composition of hierarchical sequential tests
using ATKET,” Proceedings of the International Test
Conference 1993, Baltimore, Maryland, Oct. 1993, pp. 606 –
615.

[13] R. Tupuri, A. Krishnamachary and J. A. Abraham, “Test
generation for gigahertz processors using an automatic
functional constraint extractor,” Proceedings of the 36th

Design Automation Conference, New Orleans, Louisiana,
June 1999, pp. 647 – 652.

[14] R. Raina, C. Njinda, and R.F. Molyneaux, “How seriously do
you take possible-detect faults?” Proceedings of the
International Test Conference 1997, Washington DC, Nov.
1997, pp. 819-828.

Table 3. Statistics on the self-test program
Test applicationTPG*

ALU SHU PC
Total

instructions 46 213 243 73 575
Prog. size [bytes] 87 424 471 147 1129
Exec. time [cycles] 87764 37686 11604 595 137649

*Test pattern generation program

Table 4. Fault coverage [%]
Component fault coverage

AC IR PC MAR SR ALU SHU CTRL DP I/F CPU I/F
Processor fault

coverage
99.33 98.61 89.16 97.22 98.88 98.48 94.08 88.26 71.57 97.14 91.42

