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Abstract

Reuse of cores can reduce design time for systems-on-a-chip.
Such reuse is dependent on being able to easily interface a core
to any bus. To enable such interfacing, many propose
separating a core’s interface from its internals. However, this
separation can lead to a performance penalty when reading a
core’s internal registers. We introduce pre-fetching, which is
analogous to caching, as a technique to reduce or eliminate
this performance penalty, involving a tradeoff with power and
size. We describe the pre-fetching technique, classify different
types of registers, describe our initial pre-fetching
architectures and heuristics for certain classes of registers,
and highlight experiments demonstrating the performance
improvements and size/power tradeoffs.
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1. Introduction
Silicon capacity continues to increase faster than the ability

for designers to use that silicon, resulting in the well-known
productivity gap [1]. Many people propose extensive reuse of
pre-designed intellectual property cores to reduce this gap [2],
where typical cores include microprocessors, microcontrollers,
digital signal processors, encoders/decoders, bus interfaces,
and numerous other common peripheral components. In
response, several commercial libraries of cores have evolved in
recent years (e.g., [3]). Soft cores come in the form of
synthesizable code, while hard cores come in the form of
technology-specific layouts.

A key aspect of a core’s marketability, soft or hard, is its
ability to be easily integrated across a wide variety of buses.
Unfortunately, standardizing on one or two on-chip buses does
not appear to be possible, because of the diversity of
constraints present in embedded systems, as recognized for
example by the Virtual Socket Interface Alliance (VSIA) [4].
Thus, to achieve such ease of integration, many have proposed
designing cores with their interface behavior kept separate
from their internal behavior [4][5][6]. This is especially true for
peripheral cores, for which portability is a key issue. Such
separation isolates any bus-specific changes to a small region
of the core, which we will call an interface module (IM).

However, such modularity often comes with a performance
penalty. For example, reading a core’s internal register from
the bus may require extra cycles to first read the register data

into the interface module before the data can be output to the
bus.

We propose a solution to this performance penalty, called
pre-fetching. Briefly, pre-fetching is analogous to caching,
wherein we store local copies of registers inside an interface
module so that a register read results in outputting of this local
copy, thus eliminating extra cycles on a read. As with caching,
pre-fetching schemes must strive to maximize the hit ratio. Pre-
fetching requires appropriate interface module architecture
design, the focus of this paper, as well as heuristics that
maximize the hit/miss ratio.

In this paper, we describe the idea of pre-fetching, classify
common core registers, describe pre-fetching architectures and
simple heuristics for common classes, and provide results
demonstrating the impact on performance, power and size.
Finally, we provide conclusions and discuss future work.

2. Pre-fetching overview
2.1 Problem description

Separating a core’s interface behavior and internal behavior
can lead to performance penalties. For example, consider the
core architectures shown in Figure 1(a), (b) and (c),
respectively showing a core with no IM, a core with an IM but
without pre-fetching, and a core with an IM with pre-fetching.
The latter two architectures are similar to that being proposed
by the VSIA. The IM interfaces with the system bus, whose
protocol may be arbitrarily complex, including a variety of
features like arbitration. The IM also interfaces with the core
internals, over a core internal bus; this bus is typically
extremely simple, implementing a straightforward data transfer
(and it is this internal bus that the VSI On-Chip Bus group is
standardizing). Without an IM, a read of a core's internal
register from the system bus may take as little as 2 cycles, as
shown in Figure 2(a). With an IM, the read of a core’s internal
register may require 4 cycles, 2 from the internal module to the
IM, and 2 from the IM to the bus. Thus, a read may require
extra cycles compared with a core whose interface and internal
behavior was combined.

Our focus is to minimize this performance penalty in order
to maximize the usefulness of the core. We seek to do so in a
manner transparent to both the developers of the core internal
behavior as well as the system bus. Because of the continued
exponential growth in chip capacity, we seek to gain
performance by making the tradeoff of increased size, since
size constraints continue to ease. However, we note that our
approach increases the switching activity of the core, and thus
we must also evaluate the increased power consumption and
seek to minimize this increase.



We focus on peripheral cores, whose registers will be read
by a microprocessor over a system bus (perhaps via a bus
bridge), with the idea being to minimize the read latency
experienced by the microprocessor.

The basic technique that we propose is called pre-fetching.
Pre-fetching is the technique of copying a core’s internal
register data into a pre-fetch register in a core’s IM, so that
when a read request from the bus occurs, the core can
immediately output pre-fetched data without spending extra
cycles to first get the data from the core’s internal module. We
use the terms hit and miss in a manner identical for caches; a
hit means that the desired data is in a pre-fetch register, while
a miss means that the data must first be fetched into a pre-fetch
register before being output to the system bus.

For example, Figure 2(c) shows that pre-fetching a core's
internal register D into an IM register D' results in a system
read again requiring only 2 cycles, rather than 4.

2.2 Classification of core registers
We immediately recognized the need to classify common

types of registers found in peripheral cores, since different
types would require different pre-fetching approaches.

After examining cores (primarily from the Inventra library)
focusing on bus peripherals, serial communication, encryption,
and compression/decompression, we defined a register
classification scheme based on four attributes: update type,
access type, notification type, and structure type.

1) The update type of a register describes how the register’s
contents are modified. Possible types include:
a) A static-update register is updated by the system

only, where the system is the device (or devices) that
communicate with the core over the system bus. An

example of a static register is a configuration register.
After the system updates the register, the register’s
content does not change until the system updates it
again.

b) A volatile-update register is updated by a source
other than the system (e.g., internally by the core or
externally by the core’s environment) at either a
random or fixed rate. An example is an analog-to-
digital converter, which samples external data,
converts the data to digital, and stores the result in a
register, at a fixed rate.

c) An induced-update register is updated as a direct
result of another register within the core being
updated. Thus, we associate this register with the
inducing register. Typically, an induced register is
one that provides status information.

2) The access type of a register describes whether the system
reads and/or writes the register, with possible types
including: (a) read-only access, (b) write-only access, and
(c) read/write access.

3) The notification type describes how the system is made
aware that a register has been updated, with possible types
including:
a) An interrupt notification in which the core generates

an interrupt when the register is updated.
b) A register-based flag notification in which the core

sets a flag bit (where that bit may be part of another
register).

c) An output flag notification in which the core has a
specific output signal that is asserted when the
register is updated.

d) No notification in which the system is not informed
of updates and simply uses the most recent register
data.

4) The structure type of the register describes the actual
storage capability of the register, with possible types
including:
a) A singly-structured register is accessed through some

address and is internally implemented as one register.
b) A queue-structured register is a register that is

accessed through some address but is internally
implemented as a block of memory. A common
example is a buffer register in a UART.

c) A block-structured register is a block of registers that
can be accessed through consecutive addresses, such
as a register file or a memory.

2.3 Commonly-occurring register types
For our first attempt at developing pre-fetching techniques

for cores, we focused on the following three commonly
occurring combinations of registers in cores.

(1) Core1 -- Configuration registers: Many cores have
configurable settings controlled by a set of configuration
registers. A typical configuration register has the features of
static update, read/write access, no notification, and singly
structured. We refer to this example as Core1.
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Figure 1: Core interface options: (a) No IM, (b) IM w/o
pre-fetching, (c) IM w/ pre-fetching.
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Figure 2: Interface option timing: (a) No IM, (b) IM w/o
pre-fetching, (c) IM w/ pre-fetching.



(2) Core2 -- Task registers: Many cores carry out a specific
task from start to completion and have a combination of a data
input register, a data output register, and a status register that
indicates completion of the core’s task. For example, a CODEC
(compress/decompress) core typically has such a set of
registers. We looked at how to pre-fetch the data output and
status registers. The data output register has the following
features: volatile-update at a random rate, read-only access,
register-based flag notification with the flag stored in the status
register, and singly structured. The status register has the
following features: induced update by an update to the data
output register, read-only access, no notification, and singly
structured. Although the data input register will not be pre-
fetched, its features are: volatile-update at a random rate, write-
only access, no notification, and singly structured. We refer to
this example as Core2.

 (3) Core3 -- Input-buffer registers: Many cores have a
combination of a queue data buffer that receives data and a
status register that indicates the number of bytes in the buffer.
A common example of such a core is a UART. Features of the
data buffer include: volatile-update at a random rate, read-only
access, register-based flag notification stored in the status
register, and queue-structured. The status register features
include: induced-update by an update to the data register, read-
only access, no notification, and singly structured. We refer to
this example as Core3.

2.4 Related work
While much work has been done on interfacing, to our

knowledge none of the literature includes the idea of pre-
fetching. Most interfacing work has focused on automatically

synthesizing logic to interface to a bus (e.g., [9][10]),
synthesizing the bus itself (e.g., [11]), or defining a standard
bus protocol (e.g., [12]).

3. Pre-fetching architectures and heuristics
3.1 Architectures

In order to implement the pre-fetching for each of the above
listed combinations of registers, we developed architectures for
interface modules for each. Figure 3 illustrates the architecture
for each of the three combinations respectively. Each IM
architecture has three regions:
1. Controller: The controller’s main task is to interface with

the system bus. It thus handles reads and writes from and
to the core’s registers. For a write, the controller writes
the data over the core internal bus to the core internal
register. For a read, the controller outputs the appropriate
pre-fetch register data onto the bus; for a hit, this
outputting is done immediately, while for a miss, it is
done only after forcing the pre-fetch unit to first read the
data from the core internals.

2. Pre-fetch registers: These registers are directly connected
to the system bus for fast output. Any output to the bus
must pass through one of these registers.

3. Pre-fetch unit: The PFU implements the pre-fetch
heuristics, and is responsible for reading data from the
core internals to the pre-fetch registers. Its goal is to
maximize hits.

The architecture for the Core1 situation is shown in Figure
3(a), showing one register D and its corresponding pre-fetch
register D’. Since D is only updated by the system bus, no pre-

D

D’

Core internals

IM

Controller

data addr rd    wr

e

ld

clk

wr

rd

addr

data

2 cycles

D D’

(a)

DI

DO’

Core internals

IM

Controller

data addr rd    wr

S’

PFUrd

DO S

writing

e1

e2

ld1 ld2

clk

wr

i_rd

i_addr

i_data

addr

rd

2 cycles

data

DS

S’ D’

(b)

D

D’

Core internals

IM

Controller

data addr rd    wr

S’

PFUrd

S

e1

e2

ld1 ld2

clk

i_rd

i_addr

i_data

rd

addr

data

2 cycles

D

D’

S D

S’

(c)

Figure 3: Interface module architecture and timing diagrams for (a) Core1, (b) Core2, and (c) Core3.



fetch unit is needed; instead, we can write to D’ whenever we
write to D. Such a lack of a PFU is an exception to the normal
situation. Figure 3(b) shows the architecture for the Core2
situation. The data output register DO and status register S
both have pre-fetch registers in the IM, but the data input
register DI does not since it is never read by the system bus.
The PFU carries out its pre-fetch heuristic (see next section),
unless the controller asserts the “writing” line, in which case
the PFU suspends pre-fetching so that the controller may write
to DI over the core internal bus. Figure 3(c) shows the
architecture for the Core3 example, which has no write-access
registers and hence does not include the bus between the
controller and the core internal bus.

3.2 Heuristics
We applied the following pre-fetch heuristics within each

core's interface module.
Core1: Upon a system write to the data register D,

simultaneously write the data into the pre-fetched data register
D’. This assumes that a write to the data register will occur
prior to a read from the register.

Core2: After the system writes to the data input register DI,
we read the core’s internal status register S into the pre-fetched
status register S'. If the status indicates completion, we read the
core’s internal data output register DO into the pre-fetched
data-output register DO’. We repeat this process.

Core3: We continuously read the core’s internal status
register S into the pre-fetched status register S' until the status
indicates the buffer is no longer empty. We then read the core's
data register D into the pre-fetched data register D'. While
waiting for the system to read the data, we continuously read
the core's internal status register into the pre-fetched status
register, thereby providing the most current status information.
When the data is read by the system, depending on whether the
buffer is empty, we either read the next data item from the core
or repeat the process.

Figure 3 shows timing diagrams for the three cores with an
IM and pre-fetching. In all three cores, the read latency for each
core with an IM and pre-fetching was equal to the latency of
that core without an IM, thus eliminating the performance
penalty.

Note that an IM's architecture and heuristic are dependent
on the core internals. This is acceptable since the core
developer builds the IM. The IM controller’s bus interface is
not, however, dependent on the core internals, as desired.

4. Experiments
We implemented cores representing the three earlier

common examples, in order to evaluate performance, power
and size tradeoffs achievable through pre-fetching. Results are
summarized in Table 1. All three cores were written as soft
cores in register-transfer-level behavioral VHDL. The three
cores required 136, 220, and 226 lines of VHDL, respectively.
We synthesized the cores using Synopsys Design Compiler.
Performance, average power, and energy metrics were
measured using Synopsys analysis tools, using a suite of core
test vectors for each core. It is important to note that these
cores have simple internal behavior and were used for
experimentation purposes only.

In all three cores, when pre-fetching was added to the IM’s,
any performance penalty was effectively eliminated. In Core2
and Core3, there was a trivial one-time 30 ns and 10 ns
overhead associated with the initial time required to start and
restart the pre-fetching process for the particular pre-fetch
heuristics.

The addition of an IM to cores adds size overhead to the
design, but size constraints continue to relax as chip capacities
continue their exponential growth. In the three cores described
above, there was an average increase in the size of each core by
1352 gates. The large percentage increase in size for Core1 and
Core2 is due to the fact that these cores were unusually small
to begin with since they had only simple internal behavior,
having only one or two thousand gates; more typical cores
would have closer to ten or twenty thousand gates, so the
percentage increase caused by the few thousand extra gates
would be much smaller.

In order for pre-fetching to be a viable solution to our
problem, power and energy consumption must also be
acceptable. Power is a function of the amount of switching in
the core, while energy is a function of both the switching and
the total execution time. IM’s without pre-fetching cause both
an increase in power (due to additional internal transfers to the
IM) and an increase in overall energy consumption (due to
longer execution time) in all three cores. Compared to IM's
without pre-fetching, IM's with pre-fetching may increase or
decrease power depending on the pre-fetch heuristic and
particular application. For example, in Core1 and Core3, there
was an increase in power (due to the constant activity of the
pre-fetch unit), but in Core2, there was a decrease in power
(due to the periods of time during which the pre-fetch unit was
idle). However, in all three cores, the use of pre-fetching in the
IM decreased energy consumption over the IM without pre-
fetching (because of reduced execution time). In addition, the
increase in energy consumption relative to the core without an
interface module was fairly small.

To further evaluate the usefulness of pre-fetching, we
analyzed a digital camera system [8]. The digital camera
consists of a CCD preprocessor core for capturing images, a
CODEC core to compress and decompress the picture frames,

Table 1: Impact of pre-fetching on several cores.

Metric Core1 Core2 Core3

Size w/o IM (gates) 1080 2638 10571

Size w/ IM w/o PF (gates) 2669 4234 11506

Size w/ IM w/ PF (gates) 3066 6172 13146

Performance w/o IM (ns) 6895 5515 2865

Performance w/ IM w/o PF (ns) 9835 8515 4305

Performance w/ IM w/ PF   (ns) 6895 5545 2875

Power w/o IM        (microwatts) 1365 480 2016

Power w/ IM w/o PF (microwatts) 1399 616 1521

Power w/ IM w/ PF  (microwatts) 1422 560 2229

Energy w/o IM        (nJ) 9.41 2.65 5.77

Energy w/ IM w/o PF (nJ) 13.76 5.25 6.55

Energy w/ IM w/ PF   (nJ) 9.81 3.11 6.41



and several other cores, along with a microprocessor, BIOS and
memory. We initially had implemented the CCD and CODEC
cores using IM’s without pre-fetching. We therefore modified
them to use pre-fetching, and compared the two versions of the
digital camera system. Table 2 provides the number of cycles
for reading status and data registers for the two cores to capture
one picture frame. The number of cycles required for these
cores with pre-fetching is half of the number of cycles required
without pre-fetching. The improvement in performance for
reads from the CCD and CODEC was 50%. The overall
improvement in performance for the digital camera was over
1,500 cycles just by adding pre-fetching to these two cores, out
of a total of about 47,000 cycles to capture a picture frame. The
pre-fetching performance increase of the digital camera is
directly related to the ratio of I/O access to processor
computation. Because the digital camera spends 78% of
execution time performing computation and only 12%
performing I/O access, pre-fetching did not have a large impact
on overall performance. However, the increase in performance
for peripheral I/O access was 25%. Therefore, for a design that
is more I/O intensive, one would expect a greater percentage
performance increase. Furthermore, if the processor was
pipelined, the number of cycles required for program execution
would decrease, and the percentage of time required for I/O
access would increase. Thus, one would again expect a greater
percentage performance increase from pre-fetching. Adding
pre-fetching to other cores would of course result in even
further reductions. The power and energy penalties are shown
in Table 3. We see that, in this example, pre-fetching is able to
eliminate any performance overhead associated with keeping
interface and internals separated in a core.

Pre-fetching enables elimination of the performance penalty
while fully supporting the idea of a VSI standard for the

internal bus between the IM and core internals. It can also be
varied to tradeoff performance with size and power; ideally, a
future tool would synthesize an IM satisfying power,
performance and size constraints given by the user of a core.

5. Conclusions
We introduced pre-fetching as a technique to overcome the

main drawback of degraded performance when keeping a
core’s interface and internal behavior separated. As such
separation is key to a core’s marketability, pre-fetching thus
improves the usefulness of cores. In this paper, we
demonstrated that in some common cases of register
combinations, pre-fetching eliminates the performance
degradation, at the expense of acceptable increases in size and
power. Extensive future work will focus on developing pre-
fetching architectures and heuristics for more complex register
combinations found in many cores, requiring techniques for
specifying register inter-dependencies and priorities, for
allocating pre-fetch registers within certain size constraints, for
scheduling pre-fetching over the core internal bus to maximize
the hit/miss ratio, while considering power and performance
constraints.
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Table 2: Impact of pre-fetching on Digital Camera
performance.

Reads Cycles w/o
pre-fetching

Cycles w/
pre-fetching

CCD – Status 3 12 6

CCD – Data 256 1024 512

CODEC – Status 256 1024 512

CODEC – Data 257 1028 514

Total for 2 cores 772 3088 1544

Digital Camera 48,616 47,072

Digital Camera Peripheral
I/O Access

6,224 4,680

Digital Camera Processor
Execution

42,392 42,392

Table 3: Impact of pre-fetching on Digital Camera
power/energy.

No IM IM w/o pre-fetching IM w/ pre-fetching

Power, mW 95.4 98.1 98.1

Energy,µJ 44.9 47.7 46.2


