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Abstract

Today’s system-on-a-chip designs consist of many cores. To
enable cores to be easily integrated into different systems,
many propose creating cores with their internal logic
separated from their bus wrapper. This separation may
introduce extra read latency. Pre-fetching register data into
register copies in the bus wrapper can reduce or eliminate this
extra latency. In this paper, we introduce a technique for
automatically designing a pre-fetch unit that satisfies user-
imposed register-access constraints. The technique benefits
from mapping the pre-fetching problem to the well-known real-
time process scheduling problem. We then extend the technique
to allow user-specified register interdependencies, using a
Petri Net model, resulting in even more efficient pre-fetch
schedules.
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1. Introduction
Today’s system designers can incorporate increasingly

larger numbers of components into a single design [9]. This
rapid growth of system-on-a-chip designs has led to the
marketability of Intellectual Property (IP) cores, available in
various forms ranging from soft cores to hard cores (e.g., [4]).
The ability to easily integrate a core into a system can increase
a core’s usefulness. Early efforts by the Virtual Socket
Interface Alliance (VSIA) [12] focused on defining a standard
on-chip bus, but this was soon viewed to be infeasible. Instead,
they are now defining a standard that prescribes creating cores
with internal behavior separated from the bus interface logic
through a bus wrapper. Other researchers have also proposed
such separation as a method to enable cores to be easily
integrated into different systems [2][8][10]. As shown in Figure
1, the wrapper interfaces on one-side with an on-chip bus, and
on the other side with a core internal bus. It is this core internal
bus that the VSIA is standardizing -- they refer to it as the
Virtual Component Interface. Targeting a core to a specific on-
chip bus thus requires changes only to its bus wrapper, making
integration easier than if changes to the core’s internals were
required.

Separating the internal behavior from the bus wrapper can
lead to extra register read latency when the on-chip bus (OCB)
and internal bus (IB) (see Figure 1) are very different. When
similar, the wrapper can detect an OCB read request and
convert it to an IB request in the same cycle, and likewise pass
the read data from the IB to the OCB in one cycle, for a total of

2 cycles for a read. When the buses are very different, though,
the wrapper may have to latch the OCB read request before
converting it to an IB read on the next cycle, and likewise it
may have to latch the data read from the IB before putting it on
the OCB, yielding 2 extra cycles, or 4 cycles total for a read. In
this paper, we assume that the buses are different and hence 4
cycle reads would be required without pre-fetching.

In [6], we introduced a technique, called pre-fetching, for
reducing the extra cycles. Pre-fetching, similar to caching,
keeps local copies of a core's internal registers directly in the
bus wrapper, and updates those copies during cycles when the
OCB is not accessing the core. 2 cycle reads are thus possible
for pre-fetched registers, since the wrapper can respond
immediately to an OCB read request with data from its own
register copies. In this paper, we describe a technique for
automatically designing a pre-fetch unit that meets user-
provided constraints on maximum allowable latency and data-
age for each register. The key design problem is to schedule the
pre-fetches over the core’s internal bus such that the
constraints are met. We observed that the pre-fetching problem
could be mapped to the extensively researched real-time
process scheduling problem, and thus we apply powerful
heuristics and analysis techniques for that problem to solve the
pre-fetching problem. Also in this paper, we consider the case
where the core designer is able to provide additional
information about the registers, in particular, their update
interdependencies, which we can use to build an even better
pre-fetch schedule. In this case, we use Petri Nets as a model
for specifying a core’s register update dependencies, and we
also provide a heuristic for scheduling pre-fetches based on that
model.

Much work has been done on interfacing with cores, but to
our knowledge none of the literature includes the idea of pre-
fetching. The bulk of interfacing work has dealt with the
automatic synthesis of logic to interface with a bus (e.g.,
[2][7]), synthesis of the bus itself (e.g., [3]), or defining a
standard bus protocol (e.g., [11]). Pre-fetching of course has
been applied before to microprocessors and memories, but our
focus is on peripheral cores.

2. Problem definition
The basic architecture of a sample core with a pre-fetching

bus wrapper is shown in Figure 1. The details of the core
internals are omitted except for three registers, A, B, and C.
The wrapper has three parts:

1. The pre-fetch registers are copies of readable registers in
the core internals.  In the figure, we assume A and B are
readable, so we create pre-fetch registers A' and B'.



2. The controller detects OCB write requests corresponding to
one of the core’s registers, and converts those requests into
writes over the internal bus. The controller also detects
OCB read requests, and puts data on the OCB from the
appropriate pre-fetch register.

3. The pre-fetch unit (PFU) is responsible for keeping the pre-
fetch registers as up-to-date as possible, by pre-fetching the
core’s internal registers over the internal bus, when the
internal bus is not being used for a write by the controller,
i.e., during internal bus idle cycles. Only one register can
be read from the core internals at a time. Our focus is the
design of the PFU.

We assume we are given a list of the core’s readable registers,
which must be pre-fetched. We also assume that the bus
wrapper can accommodate one copy of each such register
(future work may consider the situation where only a subset of
registers fit in the bus wrapper). Each register in the list is
annotated with two important read-access constraints:

• Register age constraint: This constraint represents the
number of cycles old that data may be when read. In other
words, it represents the period during which the pre-fetch
register must be updated at least once. An age constraint of
0 means that the data must be the most recent data, which in
turn means that the data must come directly from the core
and hence pre-fetching is not allowed, since pre-fetched data
is necessarily at least one cycle old. A constraint of 0 also
means that the access-time constraint must be at least 4
cycles.

• Register access-time constraint: This constraint represents
the maximum number of cycles that a read access may take.
The minimum is 2, in which case the register must be pre-
fetched. An access-time constraint greater than 2 denotes
that additional cycles may be tolerated.

We wish to design a PFU that reads the core internal registers
into the pre-fetch registers using a schedule that satisfies the
age and access-time constraints on those registers. Note that
certain registers may be pre-fetched more frequently than

others if this is required to satisfy differing register access
constraints.

The tradeoff of pre-fetching is performance improvement at
the expense of size and power. Our main goal is performance
improvement, but we should ensure that size and power do not
grow more than an acceptable amount. Future work may
include optimizing a cost function of performance, size and
power.

For example, Figure 1 shows a core with three registers, A,
B, and C. We assume that registers A and B are independent
registers that are read-only, and updated randomly by the core
internals. Assume that A and B have register age constraints of
4 and 6 cycles, respectively. We might use a naive pre-fetching
heuristic that pre-fetches on every idle cycle, reading A 60%
and B 40% of the time, leading to Schedule 1 in Table 1.
However, we can create a more efficient schedule, as shown in
Schedule 2. Although both schedules will meet the constraints,
the first schedule will likely consume more power. The naive
scheduler also does not consider the effects of register writes,
which will be taken into consideration using real-time
scheduling techniques.

3. "Real-time" pre-fetching
During our investigation for heuristics to solve the pre-

fetching problem, we noticed that the problem could be
mapped to the widely-studied problem of real-time process
scheduling, for which a rich set of powerful heuristics and
analysis techniques already exist. We now describe the
mapping and then provide several pre-fetching heuristics
(based on real-time scheduling heuristics) and analysis
methods.

3.1 Mapping to real-time scheduling
A simple definition of the real-time scheduling problem is

as follows. Given a set of N independent periodic processes,
and a set of M processors, we must order the execution of the
N processes onto the M processors. Each process has a period,
Pi, a deadline, Di, and a computation time, Ci. The period of a
process is the rate at which the process requests execution. The
deadline is the length of time in which a process must complete
execution after it requests to be executed. Finally, the
computation time is the length of time a process takes to
perform its computation. Therefore, real-time scheduling is the
task of ordering the execution of the N processes among the M
processors, to ensure that each process, executes once every
period Pi and within its deadline Di, where each process takes
Ci time to complete.

A mapping of the pre-fetching problem to the real-time
process-scheduling problem is as follows.

Table 1: Pre-fetch scheduling for the core in Figure 1.

Idle cycle Schedule 1 Schedule 2
0 A A
1 B B
2 A
3 A
4 B A
5 A
6 B
7 A B
8 A A
9 B

Figure 1: Bus wrapper with pre-fetching
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• Register 
�

 Process: A register that must be scheduled for
pre-fetching corresponds to a process that must be
scheduled for execution.

• Internal bus �  Processor: The internal bus can
accommodate only one pre-fetch at a time. Likewise, a
processor can accommodate only one process execution at
a time. Thus, the internal bus corresponds to a processor.

• Pre-fetch �  Process execution: A pre-fetch occurs over
the internal bus, and thus corresponds to a process
execution occurring on a processor.

• Register age constraint �  Process Period: The register
age constraint defines the period during which the register
must be pre-fetched, which corresponds to the period
during which a process must be scheduled.

• Register access-time constraint �  Process Deadline: The
access-time constraint defines the amount of time a read
may take relative to the read request, which corresponds
to the amount of time a process must complete its
execution relative to the time it requested service.

• Pre-fetch time �  Process computation time: A pre-fetch
corresponds to a process execution, so the time for a pre-
fetch corresponds to the computation time for a process. In
this paper, we assume a pre-fetch requires 2 cycles,
although the heuristics and analysis would of course apply
if we extended the register model to allow for (the rather
rare) situation where different registers would require
different amounts of time to read them from the core
internals.

Given this mapping, we can now use several known real-time
scheduling and analysis techniques to solve the pre-fetching
problem.

3.2 Cyclic executive approach
The cyclic executive approach [1] is a straightforward

process scheduling method that can be used for a fixed set of
periodic processes. The approach constructs a fixed repeating
schedule called a major cycle, which consists of several minor
cycles of fixed duration. The minor cycle is the rate at which
the process with the highest priority will be executed. The
minor cycle is therefore equal to the smallest age of the
registers to be pre-fetched. This approach is attractive due to its
simplicity. However, it does not handle sporadic processes (in
our case, sporadic writes), all process periods (register-age
constraints) must be a multiple of the minor cycle time, and
constructing the executive may be computationally infeasible
for a large number of processes (registers).

To serve as examples, we describe three cores with various
requirements. Table 2 contains data pertaining to all three of
our cores. Table 2 contains information regarding maximum
register age constraint (Max Age), register access time
constraint or deadline (D), rate monotonic priority assignment
(Pri. RM), time required to pre-fetch register (PF Time),
response time of register (Resp. Time), utilization for register
set (Util.), and utilization bound for register set (Util Bnd.).
Core1 implements a single channel DAC converter. Although
the analog portion of the converter could not be modeled in
VHDL, the technique for converting the analog input was
implemented. The core has a single register, DATA, that is
read-only and updated randomly externally from the system.
Core2 calculates the Greatest Common Divisor (GCD) of three
inputs while providing checksum information for the inputs and
the result. The core contains three registers, GCD1, GCD2, and
CS. The result from the GCD calculator is valid when GCD1 is
equal to GCD2. Registers GCD1, GCD2, and CS are
independent read-only registers that are updated externally
from the system. Core3 has five registers, STAT, BIAS, A, B,
and RES. STAT is a status register that is read-only, and
indicates the status of the core (i.e., busy or not busy).
Registers A and B are read-only registers that are updated
randomly from outside the system. RES is a read-only register
containing the results of some computation on registers A, B,
and BIAS, where BIAS is a write-only register that represents
some programmable adjustment in the computation.

We can use the cyclic executive approach to create a
schedule for each of our three cores. For Core1, both the minor
cycle and major cycles are 3. For Core2, the minor cycle is 10
and the major cycle is 20. Finally, for Core3, we can construct
a cyclic executive with a minor cycle of 5 and a major cycle of
25.

3.3 Rate monotonic priority assignment
A more general scheduling approach can be used for more

complex examples, wherein we determine which process to
schedule (register to pre-fetch) next based on a priority scheme.
A rate monotonic priority assignment [1] assigns a priority to
each register based upon its age. The register with the smallest
age will have the highest priority. Likewise, the register with
the largest age will have the lowest priority. For our examples
we will use a priority of one to indicate the highest priority
possible. Rate monotonic priority assignment is known to be
optimal in the sense that if a process set can be scheduled with
a fixed-priority assignment scheme, then the set can also be
scheduled with a rate monotonic assignment scheme.

We again refer to Table 2 for data pertaining to all three of
our cores. For Core1, the register age constraint of the register
DATA is 3 cycles. Given that DATA is the only register
present, it is assigned the highest priority. Core2’s registers
GCD1, GCD2, and CS have age constraints of 10, 10, and 20
respectively. Therefore, the corresponding priorities from
highest to lowest are GCD1, GCD2, and CS. However, because
the register age constraint for GCD1 and GCD2 are equal, the
priorities for Core2 could also be, from highest to lowest,
GCD2, GCD1, and CS. It is important to note that the priorities
of registers with the same age constraint can be assigned
arbitrary relative priorities as long as the constraints are met.

Table 2: Pre-fetch core descriptions.

Core Reg. Max
Age

D Pri.
RM

PF
Time

Resp.
Time

Util. Util.
Bnd

1 DATA 3 2 1 2 2 66.7 100
2 GCD1 10 2 1 2 2 50.0 78.0

GCD2 10 2 2 2 4
CS 20 2 3 2 6

3 STAT 5 2 1 2 2 86.0 75.7
A 25 2 3 2 8
B 25 2 4 2 16
RES 10 2 2 2 4



For Core3, the age constraints for the registers STAT, A, B,
and RES are respectively 5, 25, 25, and 10. Therefore, the
priority of the registers from highest to lowest would be STAT,
RES, A, and B.

3.4 Utilization-based schedulability test
The utilization-based schedulability test [5] is used to

quickly indicate whether a set of processes can be scheduled, or
in our case whether the registers can be pre-fetched. All N
registers of a register set can be pre-fetched if Equation 1 is
true, where Ci is the computation time for register i, Ai is the
age constraint of register i, and N is the number of registers to
be pre-fetched. The left-hand side of the equation represents
the utilization bound for a register set with N registers, and the
right-hand side represents the current utilization of the given
register set.

If the register set passes this test, all registers can be pre-
fetched and no further schedulability analysis is needed.
However, if the register set fails the test, a schedule for this
register set that meets all constraints might still exist. In other
words, the utilization-based schedulability test will indicate
that a register set can be pre-fetched, but does not indicate that
a register set cannot be pre-fetched.

We can analyze our cores to determine whether we can
schedule them. From Table 2, we can see that both Core1 and
Core2 pass the utilization-based schedulability test with
respective utilizations of 66.7% and 50.0%, where the
corresponding utilization bounds were 100% and 78.0%. This
indicates that we can create a schedule for both of these cores
and we do not need to perform any further analysis. However,
Core3 has a utilization of 86.0%, but the utilization bound for 4
registers is 75.7%. Therefore, we have failed the utilization-
based schedulability test, though a schedule might still exist.

3.5 Response-time analysis
Response-time analysis [1] is another method for analyzing

whether a process set (in our case, register set) can be
scheduled. However, in addition to testing the schedulability of
a set of registers, it also provides the worst case response time
for each register. We calculate the response of a register using
Equation 2, where Ri is the response time for register i, Ci is
the computation time of register i, and Ii is the maximum
interference that register i can experience in any time interval
[t,t+Ri). The interference of a register is the amount of time
that a process must wait while other higher priority processes
execute.

A register set is schedulable if all registers in the set have a
response time less than or equal to their age constraint. From
Table 2, we can see that the registers of all three cores will
meet their register age constraints. Therefore, it is possible to
create a pre-fetching schedule for all three cores. It is
interesting to note that although the utilization-based

schedulability test failed for Core3, response time analysis
indicates that all of the registers can be pre-fetched. We refer
the reader to [1] for further details on response-time analysis.

3.6 Sporadic register writes
We now consider the impact of writes to core registers.

Writes come at unknown intervals, and a write ties up the
core’s internal bus and thus delays pre-fetches until done. We
can therefore view a register write as a high priority sporadic
process. We can attribute a maximum rate at which write
commands will be sent to the core. We will also introduce a
deadline for a write. The deadline of a write is similar to the
access-time for a register being pre-fetched. This deadline
indicates that when a write occurs, it must be completed within
the specified number of cycles.

In order to analyze how a register write will impact this
scheduling, we can create a dummy register, WR, in our
register set. The age of the WR register will be the period that
corresponds to the maximum rate at which a write will occur.
WR’s access-time will be equal to its deadline. We can now
analyze the register set to determine if a pre-fetching schedule
exists for it. This analysis will provide us with an analysis of
the worst case scenario in which a write will occur once every
period.

3.7 Deadline monotonic priority assignment
Up to this point, we have been interested mainly in a static

schedule of the register set. However, because writes are
sporadic, we must provide some dynamic mechanism for
handling them. Thus, a dynamic scheduling technique should
be used because we cannot accurately predict these writes.
Therefore, we can use a more advanced priority assignment
scheme, deadline monotonic priority assignment [1]. Deadline
monotonic priority assignment assigns a priority to each
process (register) based upon its deadline (access-time), where
a smaller access-time corresponds to a higher priority. We can
still incorporate rate monotonic priority assignment in order to
assign priorities to registers with equal access-times. Deadline
monotonic priority assignment is known to be optimal in the
sense that if a process set can be scheduled by a priority
scheme, then it can be scheduled by deadline monotonic
priority assignment.

For example, in order to accommodate writes to the BIAS
register in Core3, we can add the BIAS register to the pre-
fetching algorithm. The deadline for the BIAS register will be
such that we can ensure that writes will always have the
highest priority when we use the deadline monotonic priority
assignment. Using this priority assignment mechanism, the
priority of the registers from highest to lowest would be BIAS,
STAT, RES, A, and B.

4. Extension for update dependencies
In some cases, a core designer may be able to provide us

more information regarding when the core's internal registers

Equation 1: Utilization-based schedulability test.
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get updated -- in particular, update dependencies among
registers (e.g., if register A is updated externally, then register
B will be updated 1 cycle later). Using this information, we can
design a schedule that performs fewer pre-fetches to satisfy
given constraints, and thus can yield advantages of being able
to handle more complex problems, or of using less power.

4.1 General register attributes
We need a method for capturing the information a designer

provides regarding register updates. We divide this information
into two kinds: attributes, and update dependencies.

Attributes are used to categorize registers based on how
they are used. In [6], we defined 4 attributes: update-type,
access-type, notification-type, and structure-type. The update-
type gives information on when the register is updated. It can
be static-update (updated regularly), volatile-update (updated
at unpredictable times), or induced-update (updated as a result
of some other observable event). Access-type describes what
kind of accesses the system bus may perform. It is either read-
only, write-only, or read/write access. Notification-type
indicates how the register informs the system bus of an update.
It can be interrupt-notification, register-based flag notification,
output flag notification, or no notification. Finally, the structure
type indicates how data is arranged. It is one of singly-
structured, queue-structured, or block-structured.

Update dependencies provide further details on when the
register gets updated as a result of other updates
(inducements). There are two kinds of update dependencies:

• Internal dependencies -- dependencies between registers
must be accurately described. Dependencies between
registers affect both the operation of the core and the time at
which registers are updated. Therefore, these dependencies
are extremely important in providing an accurate model of a
core’s behavior.

• External dependencies -- Updates to registers via reads and
writes over the OCB also need to be included in our model.
This information is important because reads and writes can
directly update registers or trigger updates to other registers,
e.g., a write to a control register of a CODEC core will
trigger an event that will update the output data register.
Likewise, updates from external ports to internal core
registers must also be present in our model. These events

occur at random intervals and cannot be directly monitored
by a bus wrapper and are therefore needed to provide a
complete model of a core.

We needed to create a model to capture the above information.
After analyzing many possible models to describe both internal
and external update dependencies, we concluded that a Petri
Net model best fits our requirements.

4.2 Petri Net model construction
As in all Petri Net models, we have places, arcs, and

transitions. In our model, a place represents data storage, i.e., a
register, or any bus that the bus wrapper can monitor. In this
model, a bus place will generate tokens that will be outputted
over all outgoing arcs and consumed by data storage places
whenever an appropriate transition is fired. A transition
represents an update dependency between either the bus and a
register or between two registers. Transitions may be labeled
with conditions that represent some requirement on the data
coming into a transition. However, in many cases, a register
may be updated from some external source, i.e., the register’s
update-type is volatile. Therefore, we need a mechanism to
describe such updates. We will use a transition without
incoming arcs and without an associated condition to represent
this behavior. We will refer to such a transition as a random
transition. Given random transitions, tokens can also be
generated by external sources that cannot be directly monitored
by the bus wrapper. Thus, our model provides a complete
description of the core’s internal register dependencies without
providing all details of the core’s internal behavior.

We implemented three core examples to analyze our update
dependency model and pre-fetching technique. In order to
demonstrate the usefulness of our model we will describe one
of the cores we implemented, which we will refer to as
ADJUST, and elaborate on this example throughout the paper.
ADJUST contains three registers GO, MD, and S. First, we
annotate each register with the general register attributes
described earlier. The GO register has the attributes of static-
update, write access, no notification, and singly-structured. The
MD register has the attributes of volatile-update, read/write
access, no notification, and singly-structured. Finally, the S
register has the attributes of volatile-update, read-only access,
no notification, and singly-structured. Next, we constructed the
Petri Net for ADJUST.

Figure 2: ADJUST Register Dependencies
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Figure 2 shows the register update dependency model for
ADJUST. From this model we can see how each register is
updated. GO is updated whenever a write request for GO is
initiated on the OCB. S is updated randomly by some external
event that is unknown to the pre-fetch unit. MD is updated
when GO is equal to 1, a write request for MD is initiated on
the OCB, and some external event occurs. Therefore, we now
have a complete model of the ADJUST core that can be used to
create a pre-fetching algorithm.

Using the current model of ADJUST, we need three pre-
fetch registers in the bus wrapper, namely, GO’ , MD’ , and S’ .
GO’  would be updated whenever a write to GO was initiated
over the OCB. For MD and S, we need some method of
refreshing the pre-fetch registers to keep them as up-to-date as
possible. We will later discuss the heuristics for updating
registers with incoming random transitions. However, we
further know that pre-fetching the MD register would not be
required until a write to MD was made over the OCB and the
GO register was equal to 1. This simple interpretation of the
model will reduce the power consumed by the pre-fetch unit by
not pre-fetching MD if it is not needed.

4.3 Model refinement for dependencies
Further refinement of our register update dependency

model can be made to eliminate some random transitions.
Although the model of a particular core may have many random
transitions, there may exist some relationships between the
registers with random transitions. If two registers are both
updated by the same external event, it is possible that a
relationship may exist between the registers.

For example, in a typical CODEC core, we would find a
data register and a status register. When the data register is
updated, the status register is also updated to indicate the
operation has completed. Although both registers are updated
at random times, we know that if the status register indicates
completion, then the data register has been updated.

We can thus eliminate one random transition by replacing
the random transition with a transition having an incoming arc
from the related register and assigning an appropriate condition
to this transition. Thus, we have successfully refined our model
to eliminate a random transition. The goal of this refinement is
to eliminate as many random transitions as possible, but it is
important to note that it is not possible to eliminate all random
transitions. Therefore, we still need a method for refreshing the
contents of registers with incoming random transitions.

Figure 3 shows a refined register update dependency model
for the ADJUST core. In this new model, we have eliminated
one random transition by replacing it with a transition that will
fire if S is equal to 1. Hence, we need to modify our pre-
fetching algorithm to accompany this change. We now know
that we only need to pre-fetch MD if S is equal to 1, GO is
equal to 1, and a write to MD was initiated over the OCB. This
refinement further simplifies our pre-fetching algorithm and
will again reduce power consumption.

4.4 Pre-fetch scheduling
Given an update dependency model of a core, we need to

construct a schedule to pre-fetch the core’s registers into the
bus wrapper’s pre-fetch registers. Figure 4 describes our

update dependency model pre-fetching heuristic using pseudo-
code. Our heuristic uses the update dependency model in
conjunction with our real-time pre-fetching to create a schedule
for pre-fetching the core’s registers. The following description
will further elaborate on the heuristic.

In order to implement our pre-fetching heuristic, we will
need two data structures. The first data structure needed is a
pre-fetch register heap, or priority queue, used to store the
registers that need to be pre-fetched. Secondly, we need a list
of update arcs that must be analyzed after a register is pre-
fetched or a read or write request is detected on the OCB.
Using these data structures, we will next describe how the pre-
fetch unit will be designed.

The first step in our pre-fetching heuristic is to add all
registers with incoming random transitions to the pre-fetch
register heap. These registers will always remain in the heap
because they will need to be repeatedly pre-fetched in order to
satisfy their register age constraints.

Next, our pre-fetch heuristic needs to respond to read and
write requests on the OCB. In the event of a read request, the
pre-fetch unit will add any outgoing arcs to the list of arcs

Figure 4: General register model pre-fetching heuristic used
to implement PFU.
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      r eset  r egi st er ’ s access- t i me t o i ni t i al  val ue
      r emove r egi st er  f r om heap
      add out goi ng ar cs t o l i st  of  updat e ar cs
   }
   / /  r egi st er  has i ncomi ng r andom t r ansi t i on and cur r ent
   / /  age has r eached zer o
   el se i f  r egi st er  at  f r ont  of  heap has cur r ent  age = 0 {
      pr e- f et ch r egi st er

       r emove r egi st er  f r om t he heap
      set  cur r ent  age t o r egi st er  age const r ai nt
      add r egi st er  t o heap
      add out goi ng ar cs t o l i st  of  updat e ar cs
   }

   whi l e l i st  of  updat e ar cs i s not  empt y {
      r emove ar c f r om t he head of  t he l i st
      / /  anal yze t r ansi t i on connect ed t o ar c
      i f  t r ansi t i on f i r es {
            set  cor r espondi ng r egi st er ’ s access- t i me t o 0
            add r egi st er  t o t he heap
      }
   }
}



needed to be analyzed. As described in our real-time pre-
fetching work, a write is treated as another register with special
age and access-time constraints, i.e., the register age constraint
is 0 and the access-time constraint is initially set to infinity.
Because the core internal bus may be currently in use
performing a pre-fetch, we use this mechanism to eliminate any
contention. As described below, by setting the access-time
constraint on the write register to 0, we will ensure that the
write will be the next action performed. Therefore, a write
request will be handled by first copying the data into the
corresponding pre-fetch register, setting the access-time
constraint to 0, and adding the write register to the pre-fetch
register heap. In addition, any outgoing arcs will be added to
the list of update arcs.

We will use our real-time pre-fetching to pre-fetch registers
according to their priorities as assigned by the deadline
monotonic priority assignment. When two registers have the
same priority assigned by this mechanism, we will use the
priority assigned by the rate-monotonic priority assignment to
schedule the pre-fetching. According to this heuristic, registers
with an access-time constraint of 0 will be pre-fetched first.
That means that all write requests and, as we will describe
later, all registers that have been updated will be pre-fetched
first. Note that writes will still take highest priority because
their register age constraint is 0. If no write requests or
registers without incoming random transitions need to be pre-
fetched, our pre-fetching heuristic will next schedule registers
with incoming random transitions according to their rate-
monotonic priority assignment. Therefore, our pre-fetch
register heap will be sorted first by deadline-monotonic priority
assignment and further by rate-monotonic priority assignment.

After each register pre-fetch is made or a read or write
request is detected on the OCB, we need to analyze all arcs in
the update arc list. If any transition fires, the outgoing arcs of
this transition will be added to the list. If a token reaches
another place, we set the corresponding register’s access-time
to 0 and add it to the heap, thus ensuring that this register is
pre-fetched as soon as possible.

In order to better understand this pre-fetching heuristic, we
will look at the ADJUST core. In ADJUST, we have one
random transition which is connected to the S register. We
noticed that in our design, on average, we only needed to read
the contents of S every 6 cycles. Therefore, we set the register
age constraint to 6 cycles, and the register access-time
constraint to 2, indicating that the register S must be pre-
fetched every 6 cycles. For MD, both the register age and
access-time constraints are 2 cycles. GO, however, has neither
an age constraint nor an access-time constraint because it is a
write-only register. Note that even though GO is a write-only
register a copy must be maintained in the bus wrapper, as it is
needed in order to analyze the update dependencies. Our pre-
fetching algorithm will monitor the OCB. If a write to the GO
register is made, the data will be copied into GO’ , and the
write register access-time will be set to 0. On a write to the
MD register, the access-time of S will be set to 0. Also if GO is
equal to 1 and S is equal to 1, then set the access-time for MD
to 0. Finally, we will use the scheduling above to pre-fetch the
registers when needed and perform write operations.

5. Experiments
In addition to implementing the ADJUST core as described

above, we implemented two additional examples in order to
evaluate the impact on performance, size, and energy using our
real-time pre-fetching and our Petri Net based register
dependency pre-fetching approaches. The CODEC core
contains three registers DIN, DOUT, and STAT. This core
behaves like a simple compressor/decompressor, whereby the
input data is modified via some arbitrary translation, after
which the STAT register is updated to reflect completion. The
FIFO core contains two registers DATA and STAT. This core
represents a simple FIFO that has data stored in DATA and the
current number of items in the FIFO stored in STAT.

We modeled the cores as synthesizable register-transfer
VHDL models, requiring 215, 204 and 253 lines of code,
respectively -- note that we intentionally did not describe
internal behavior of the cores, but rather just the register-access
related behavior, so we could see the impacts of pre-fetching
most clearly. We used Synopsys Design Compiler for synthesis
as well as Synopsys power analysis tools.

Figure 5 summarizes the results for the three cores. For
each core, we examined four possible bus wrapper
configurations: no bus wrapper (no BW), a bus wrapper without
pre-fetching (BW), a bus wrapper with real-time pre-fetching
(RTPF), and a bus wrapper with our update dependency pre-
fetching model (PF).

The first chart in Figure 5 summarizes performance results.
In all three cores, the use of our update dependency pre-
fetching method almost entirely eliminated the performance
penalty associated with the bus wrapper. There was still a
slight overhead caused by starting the pre-fetch unit. Using our
real-time pre-fetching heuristic, we can see that although there
is a performance improvement when compared to a bus
wrapper without pre-fetching, it did not perform as well as our
update dependency model. In FIFO, we only see a very small

Figure 5: Performance (top), size (middle), and energy (bottom)
comparisons
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performance improvement using real-time pre-fetching. This
small improvement is due to fact that the DATA register in
FIFO cannot be pre-fetched using this approach. If we were to
pre-fetch DATA using real-time pre-fetching, we would empty
the FIFO and lose data. Furthermore, without any pre-fetching,
we can see a significant performance penalty.

The second chart in Figure 5 summarizes size results. As
expected, the size of the cores increased when a bus wrapper
was added, and further increased when either form of pre-
fetching was added to the bus wrapper. The average increase in
size caused by adding the update dependency pre-fetching
technique to the bus wrapper was only 1.5K gates. In
comparison, real-time pre-fetching resulted in an average
increase of 1.4K gates. It is interesting to note why the two
approaches, although quite different, resulted in approximately
the same size increase. Using real-time pre-fetching, we
increase the design complexity due to the need to keep track of
current register ages. However, using our extended approach,
complexity increases due to added logic needed to analyze
update dependencies. In both cases, the size increase is
relatively small when compared to a typical core size of 10K to
20K gates.

The third chart in Figure 5 summarizes energy consumption
for our test vectors. In all three cores, there is an overall
increase in energy consumption when a bus wrapper is added
to the core. However, the addition of pre-fetching to the bus
wrappers does not always strictly increase or decrease energy
consumption. In fact, we can see that in AJDUST and FIFO,
there is a decrease in energy consumption when our update
dependency pre-fetching is added to the bus wrapper, but in
CODEC, there is an increase. On the other hand, real-time pre-
fetching increases energy consumption in CODEC and FIFO,
and decreases energy consumption in ADJUST. As expected,
when compared to the core without a bus wrapper, both pre-
fetching techniques result in an increase in energy
consumption.

More importantly, if we compare the results of our real-
time pre-fetching to our update dependency pre-fetching, we
notice that the update dependency pre-fetching results in
significantly less energy consumption. This is easily explained
by the fact that this approach only pre-fetches registers when
they have been updated whereas our real-time pre-fetching will
pre-fetch registers more often to keep them as up-to-date as
possible. Therefore, by eliminating the need to pre-fetch all
registers within their register age constraints, we can reduce
energy consumption.

6. Conclusions
Pre-fetching can improve the performance of cores that

have been designed for portability using the VSIA standard,
and this performance enhancement improves the marketability
of those cores. In this paper, we have provided the first
definition of the pre-fetching problem, involving the
description of registers and their access constraints. We have
provided a powerful solution to this problem by mapping the
problem to the real-time process-scheduling domain, and then

applying heuristics and analysis techniques from that domain.
We have further provided a general register update dependency
model that we used to construct a more efficient pre-fetching
schedule, in conjunction with our real-time pre-fetching. We
demonstrated the effectiveness of these solutions through
several experiments, showing good performance improvements
with acceptable size and energy increases. Furthermore, we
demonstrated that using our update dependency model, we
were able to better pre-fetch registers when compared to our
real-time pre-fetching methodology. The two approaches are
thus complementary -- the real-time approach can be used
when only register constraints are provided, while the model-
based approach of this paper can be used when register update
information is also provided. Future work includes: (1)
restricting the registers that can appear in a bus wrapper to a
number less than the number of registers being pre-fetched,
resulting in new cache-like issues such as mapping and
replacement issues, and (2) developing pre-fetching heuristics
that optimize a given cost function of performance, power and
size.
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