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1.  Introduction

This manual discusses VHDL and the Synario Programmable IC
Solution.  This manual is intended to supplement the material
presented in the Programmable IC Entry manual.

The following topics are discussed in this manual:

• VHDL Language Structure

• How to write Synthesizable VHDL

• How to control the implementation of a VHDL Design

• VHDL Datapath Synthesis

• How to Manage VHDL Design Hierarchies

• VHDL Quick Reference

• Limitations (Constraints and unsupported Constructs)

• VHDL for ABEL-HDL users

• ABEL-HDL Language Reference (Dot extensions)
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2.  Language Structure

VHDL is a hardware description language (HDL) that contains the
features of conventional programming languages such as Pascal or C,
logic description languages such as ABEL-HDL, and netlist languages
such as EDIF. VHDL also includes design management features, and
features that allow precise modeling of events that occur over time.
This chapter introduces a subset of the VHDL language that allows you
to begin creating synthesizable designs, and is not intended to
describe the full language. For further information on VHDL, consult a
standard VHDL reference book. A number of these books are listed at
the end of this chapter.
The VHDL Synthesizer supports most of the VHDL language, as
described in IEEE Standard 1076-1993. The meaning of some sections
of the language, however, is unclear in the context of logic synthesis.
Examples of this are found in the standard package textio. The file I/O
operations supported by textio are useful for simulation purposes but
are not currently synthesizable.
• For sample syntax and a list of VHDL statements supported by the

VHDL Synthesizer, see Appendix A, “Quick Reference.”
• For a list of exceptions and constraints on the VHDL Synthesizer's

support of VHDL, see Appendix B, “Limitations.”
This chapter shows you the structure of a VHDL design, and then
describes the primary building blocks of VHDL used to describe typical
circuits for synthesis:
• Library (Design) Units
• Statements
• Objects
• Types
• Operators
• Attributes
In addition, the three primary methods of VHDL design are discussed:
• Dataflow VHDL
• Behavioral VHDL
• Structural VHDL
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Structure of a VHDL Design Description
The basic organization of a VHDL design description is shown in Figure
2-1. The sample file shown includes an entity-architecture pair and a
package.

Figure 2-1: The Structure of a VHDL Design Description
------------------------------------------
 PREP Benchmark Circuit #1: Data Path
--
-- Copyright 1993, Data I/O Corporation.
--
-- Copyright 1993, Metamor, Inc.
--
package typedef is
     subtype byte is bit_vector (7 downto 0);
end;

use work.typedef.all;

entity data_path is
     port (clk,rst,s_1 : in boolean;
         s0, s1 : in bit;
         d0, d1, d2, d3 : in byte;
         q : out byte);
end data_path;

architecture behavior of data_path is
    signal reg,shft : byte;
    signal sel: bit_vector(1 downto 0);
begin
     process (clk,rst)
     begin
          if rst then                   -- async reset
               reg <= x"00";
               shft <= x"00";
          elsif clk and clk'event then  -- define a clock
               sel <= s0 & s1;
               case sel is          -- mux function
                    when b"00" => reg <= d0;
                    when b"10" => reg <= d1;
                    when b"01" => reg <= d2;
                    when b"11" => reg <= d3;
               end case;
               if s_1 then              -- conditional shift
                    shft <= shft(6 downto 0) & shft (7);
               else
                    shft <= reg;
               end if;
          end if;
     end process;
     q <= shft;
end behavior;

Comments

Package

Use Clause

Entity

Sequential
Statements

Process
Statements

Architecture
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Library Units
Library units (also known as design units) are the main components of
a VHDL description. They consist of the following kinds of declarations:

• Package (optional)

• Entity

• Architecture

• Configuration (optional)

A design may include any number of package, entity, architecture, and
configuration declarations. The relationship of the four types of design
units is illustrated in Figure 2-2. Note that only the entity and
architecture design units are required; the package and configuration
design units are optional.

Figure 2-2: Relationship of VHDL design units

Package

A package is an optional library unit used for making shared
definitions. An example of something that might be shared is a type
definition, as shown in Figure 2-1. When you make definitions in a
package, you must use the library and  use statements to make the
package available to other parts of the VHDL design.

package example_arithmetic is
    type small_int is range 0 to 7;
end example_arithmetic;
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Entity

Entities contain the input and output definitions of the design. In VHDL
designs that contain a hierarchy of lower-level circuits, the entity
functions very much like a block symbol on a schematic. An entity
usually has one or more ports, which are analogous to the pins on a
schematic symbol. All information must flow into and out of the entity
through the ports, as shown:

library my_lib;
use my_lib.example_arithmetic.all;

entity ent is
    port (a0,a1,b0,b1 : in small_int; c0,c1 : out small_int);
end ent;

Note that this example references the package defined in the previous
section to gain access to the type small_int. Each port has a mode
that defines a direction: in, out, inout, or buffer.

Modes in, out, and inout all have the obvious meanings. Ports
declared to be of type out may not be read. Therefore, the
assignment:

c1 <= c0;

would be illegal since c0 is declared to be an out port. Mode buffer is
equivalent to mode out except that the value of the port may be read
within the entity.

In addition to ports, entities may also contain generics. Generics are
similar to ports, except that they pass static information. You can use
generics to create two or more instances of an entity where the
instances behave in different ways. A common use of generics is in
gate-level modeling, where generics pass delay values into the model,
as shown:

library my_lib;
use my_lib.example_arithmetic.all;

entity ent is
    generic (t_rise, t_fall : time := 5 ns);
    port (a0,a1,b0,b1 : in small_int; c0,c1 : out small_int);
end ent;

The preceding example specifies a rise and fall delay using the pre-
defined type time, and gives the delays a default value of 5 ns. Note
that if you use generics when writing code for synthesis, all generic
parameters must be given default values.
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Architecture

The architecture is the actual description of the design. If you think
of an entity as a functional block symbol on a schematic, then an
architecture describes what's inside the block. An architecture can
contain both concurrent and sequential statements, which are
described below. Note that VHDL allows you to have more than one
architecture for the same entity. For example, you might have an
architecture for synthesis and a gate-level (netlist) architecture. If you
have more than one architecture for an entity, use configuration
declarations to determine which architecture to use for synthesis or
simulation.

An architecture consists of two pieces: the architecture declaration
section and the architecture body.  Consider the following example:

architecture behavioral of ent is
 signal c_internal: small_int;
begin

c_internal <= a0 + b0;

c0 <= c_internal;

c1 <= c_internal + a1 + b1;
end behavioral;

The declaration section of the architecture is the area between the
keyword architecture and the keyword begin. Here you may declare
objects that are local to the architecture. After the declaration section
comes the architecture body, which is where you specify the behavior
of the architecture.

Configuration

Configuration declarations may be used to associate particular design
entities  to component instances (unique references to lower-level
components) in a hierarchical design, or to associate a particular
architecture to an entity. As their name implies, configuration
declarations are used to provide configuration management and
project organization for a large design.
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Statements
There are three basic kinds of statements in VHDL:

• Declaration Statements
• Concurrent Statements
• Sequential Statements

Declaration Statements

Declaration statements are used to define constants (such as literal
numbers or strings), types (such as records and arrays), objects (such
as signals, variables and components), and subprograms (such as
functions and procedures) that will be used in the design. Declarations
can be made in many different locations within a VHDL design,
depending on the desired scope of the item being declared.

Concurrent and Sequential Statements

Concurrent and sequential statements are the fundamental building
blocks of a VHDL design description. These statements, which
represent the actual logic of a design, include such things as signal
assignments, component instantiations, and behavioral descriptions.

There are important distinctions to be made between concurrent and
sequential statements, as discussed below.

Concurrent Statements

Concurrent statements are evaluated independently of the order in
which they appear. A concurrent statement is much like a signal
assignment used in a PLD programming language such as ABEL-HDL.
Signals pass values between concurrent statements, much as wires
connect components on a schematic. The “components” being
connected in a VHDL design might be logical elements that have been
described using concurrent signal assignments, or they might be
instances of lower-level entities.

Concurrent statements define logic (typically in the form of signal
assignments that include combinational logic) that is inherently
parallel. With concurrent statements, values are carried on signals,
which may be the actual input and output ports of the design (defined
in an entity statement) or local signals declared using a signal
declaration statement.
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Concurrent statements include the following:

• Signal assignments (selected and conditional)
• Component instantiations
• Generate statements
• Process statements
• Procedure and function calls

The following syntax shows an example of an architecture declaration
with concurrent statements. Note that this code fragment also
demonstrates how to include comments in VHDL source code. The
double-hyphen character sequence (--) always begins a comment, and
the comment continues until the end of the line.

architecture dataflow of my_circuit is
     signal d,e bit;
begin
    -- concurrent statements tied together with signals
    d <= in3 and in4;         -- logic for d
    e <= in5 or in6;          -- logic for e
    out1 <= in1 xor d;        -- output logic
    out2 <= in2 xor e;        -- output logic
end dataflow;

Sequential Statements

Sequential statements differ from concurrent VHDL statements in that
they are executed in the order they are written. Sequential statements
always appear within a process statement (which, in its entirety, is a
concurrent statement) or within a function or procedure.

Sequential statements are similar to statements used in software
programming languages such as C or Pascal.  The term sequential in
VHDL refers to the fact that the statements execute in order, rather
than to the type of logic generated. That is, you can use sequential
statements to describe either combinational or sequential (registered)
logic. With sequential statements, values may be carried using either
signals or variables.

Sequential statements include the following types of statements:

• Variable declarations

• Signal assignments

• Variable assignments

• Procedure and function calls

• If, case, loop, next, exit, return statements

• Wait statements

Following is an example of an architecture declaration that includes
sequential statements in a process statement:
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architecture behavior of some_thing is
begin
    process begin
        wait until clock;
        if (accelerator = '1') then
            case speed is
                when stop => speed <= slow;
                when slow => speed <= medium;
                when medium => speed <= fast;
                when fast => speed <= fast;
            end case;
        end if;
    end process;
end behavior;

Note:  Sequential statements do not imply, and are not the same as,
sequential logic.

Data Objects
Data objects hold values. Languages such as C and Pascal generally
have only one type of data object: the variable. In addition to the
variable, VHDL has two other types of data objects: constants and
signals. VHDL variables work in much the same way as variables in
conventional programming languages. From a hardware designer’s
perspective, both signals and variables can be thought of as wires
interconnected with various logic gates. The differences among VHDL
data objects lay in how they may be used and how much information
they contain.

Before they can be used, data objects must be declared with a
declaration statement, as explained separately for each of the three
data types, below. Note that the VHDL synthesis compiler ignores
initial values on both signals and variables, since most types of
hardware currently available do not have a guaranteed power-up state.
Therefore, when writing VHDL code, it is best not to use initial values
unless you know that you are guaranteed a certain power-up state in
your target device.

Variables

Like a variable in C or Pascal, a variable in VHDL carries with it only
one piece of information: its current value. Variables are assigned a
value using the := operator. Consider the following variable
assignments:

first_var := 45;

SECOND_VAR := first_var;

second_var := 0;
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In these assignments, the variable named first_var is being assigned
an integer value of 45 (For more information on data types, including
integer, see the next section). A variable named SECOND_VAR is then
assigned to whatever value first_var currently contains, which is 45.
SECOND_VAR is then assigned the integer value 0. The variables
named second_var and SECOND_VAR are the same, since VHDL is not
case-sensitive.

Note:  In VHDL, names (or identifiers, as they are more properly
referred to) must begin with a letter, and may consist of any number
of letters, digits, or underscores, as long as there is not more than one
underscore in a row. As noted earlier, no distinction is made between
upper- and lower-case characters.

Before they can be used, variables must be declared with a variable
declaration statement, as in the following example:

variable first_var : integer;
variable second_var, third_var : integer := 0;

A variable declaration begins with the keyword variable, followed by
one or more names, the data type, and optionally, an initial value.
Variables may be declared only within processes or functions, two
constructs that are explained later in this chapter.

Constants

Constants are much like variables, except, as they name implies, their
value can never change. Constants are normally employed to make
code easier to read and to modify.

Like variables, constants are declared with a declaration statements.
An example of a constant declaration is as follows:

constant one_grand : integer := 1000;

Signals

Signals are declared in much the same manner as variables. Signal
declarations may include an initial value, which will be ignored by the
synthesis compiler. Examples of signal declarations are as follows:

signal first_sig : integer;
signal second_sig, third_sig : integer := 5;

Signal assignments are performed using the <= operator, as in the
following examples:

first_sig <= 9;

second_sig <= first_sig;
third_sig <= first_sig after 5 ns;

The first clue as to the fundamental difference between signals and
variables is found in the assignment to third_sig. The example
specifies that third_sig will take on the value held by first_sig, but with
a delay of 5 nanoseconds. This is in essence propagation delay.
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Like initial values, delays specified using the optional after keyword
are ignored by the synthesis compiler, since it has no way of
guaranteeing that a particular delay will occur in the target hardware.
Therefore, you will not normally use the after clause when writing
code for synthesis. However, it is important to realize that even
without an after clause, all signal assignments occur with some
infinitesimal delay, known as delta delay. Technically, delta delay is of
no measurable unit, but from a hardware design perspective you
should think of delta delay as being the smallest time unit you could
measure, such as a femtosecond.

The effect of delta delay on the simulation behavior of your code can
be profound. Consider the following example. Assume that the signal
first_sig is assigned the value 11 at time 100 ns:

first_sig <= 11;

first_sig actually changes to its new value 1 fs after time 100 ns. Now
consider the next two assignments executed at time 200 ns:

first_sig <= 25;

first_var := first_sig;

If both of these assignments are executed at time 200 ns, first_var
immediately takes on the value 11, and 1 fs later first_sig has the
value 25.
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Data Types
VHDL supports a variety of data types. The type of a variable, signal,
or constant  determines the operators that are predefined for that
object as well as the range of values that it can take on.

The predefined VHDL data types include:

• numeric (integer or real)

• boolean

• character

• time (measured in units from fs to hr)

• string (an array of characters)

• bit (can have a value of 0 or 1)

• bit_vector (an array of bits)

After the language was defined it was acknowledged that the built-in
types were not entirely adequate for modeling the behavior of real
hardware. The IEEE standard 1164 was developed to address this
shortcoming. This standard defines the types:

• std_ulogic and std_logic (the equivalent of bits but with 9 possible
data values instead of two)

• std_ulogic_vector and std_logic_vector (an array of std_ulogic and
std_logic, respectively)

Definitions for all of the predefined types, with the exception of
std_logic and std_logic_vector, are in the file std.vhd, which contains
the package standard. The types created by the 1164 standard are
defined in the file ieee.vhd.  The primary difference between std_ulogic
and std_logic is that std_logic is what is referred to as a resolved type.
This means that objects of type std_logic can be used for modeling
logic with multiple drivers, such as tristate buses or wired logic.
Objects of type std_ulogic may have only one driver.

In addition to types, subtypes  may be used to define subsets of their
base type. For example, a short integer type (one with a specified
maximum value) can be defined as a subtype with the statement:

subtype short_int is integer range 0 to 255;

VHDL also supports enumerated and user-defined types, which are
explained later in this section.
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Numeric Types

The numeric types consist of integer, floating point (real), and
physical types. Two encoding schemes are used by the VHDL
Synthesizer for numeric types:

• Numeric types and subtypes that contain a negative number in
their range definition are encoded as two's complement numbers.

• Numeric types and subtypes that contain only positive numbers are
encoded as binary numbers.

The number of wires that are synthesized depends only on the value in
the definition that has the largest magnitude. The smallest magnitude
is assumed to be zero for numeric types.

Also for synthesis: floating point numbers are constrained to have the
same set of possible values as integers, although they can be
represented using floating point format with a positive exponent.

Numeric types and subtypes are synthesized as follows:

The declaration: Is synthesized as:

type int0 is range 0 to 100 -- 7 bit binary encoding
type int1 is range 10 to 100 -- 7 bit binary encoding

type int2 is range -1 to 100 -- 8 bit two's complement

type int3 is int2 range 0 to 7 -- 3 bit binary encoding

Numeric Operators

If the type of the object to which the result is assigned has more bits
than either of the operands, then the result of the numeric operation is
automatically sign or zero extended by the VHDL synthesizer.
Sequential  encoded types are zero extended, and two's complement
numbers are sign extended.

If the type of the object to which the result is assigned has fewer bits
than either of the operands, then the result of the numeric operation is
truncated. If a numeric operation has a result that is larger than either
of the operands then the new size is evaluated before the above rules
are applied. For example, if an addition operator "+" generates a carry,
the result will be truncated, used, or sign (or zero) extended according
to the type of the object to which the result is assigned:

type short is integer 0 to 255;
subtype shorter is short range 0 to 31;
subtype shortest is short range 0 to 15;

signal op1,op2,res1: shortest;
signal res2: shorter;
signal res3: short
begin
    res1 <= op1 + op2;    -- truncate carry
    res2 <= op1 + op2;    -- use carry
    res3 <= op1 + op2;    -- use carry and zero extend

Note:  During simulation, if the result of an arithmetic operation than
the size of the specified object, as is the case for signal res1, then the
simulator will produce an error.
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The encoding of integers in a binary format means that all ranges are
rounded up to the nearest power of two. This means that if shorter had
been declared as:

subtype shorter is short range 0 to 16;

then the result would have been the same after synthesis. Objects
declared type of type integer without a range constraint will be
synthesized into 32 wires.

The are two predefined subtypes of integer. Subtype natural is
defined as non-negative integer, while subtype positive is defined as
a non-negative and non-zero integer.

Other Types

The types bit, Boolean, character, std_ulogic and std_logic are
enumerated types. Enumerated types are discussed in the following
subsection. The type bit_vector is an array, as is the type
std_logic_vector.

• Bit , std_logic and std_ulogic types are synthesized to one wire.
• Character types are synthesized to seven wires.
• Boolean  types are synthesized to one wire.
• Array and record types are composites, and are treated as

collections of their elements. Subtypes of composite types are
treated as collections of the elements of the subtype only.

Enumerated Types

An enumerated type in VHDL is a special kind of data type that has a
symbolic value. A good example of where an enumerated type signal
would be used is in a state machine, in which symbolic values are used
to represent unique states of the machine:

type machine_state is (Init, Ready, Xmit1, Xmit2, Xmit3, Xmit4);
signal present_state, next_state: machine_state;

Many of the common data types used in VHDL, such as bit, Boolean,
character, and std_ulogic, are actually enumerated types defined in a
library such as std or ieee. Bit, Boolean, and character are all
enumerated types that are predefined in std.vhd.

When synthesized, enumerated types result in a binary encoding,
unless the enum_encoding attribute has been used to specify
alternate values for each element of the type.  In the absence of the
enum_encoding attribute, elements in the enumerated type are
assigned numeric values from left to right, with the value of the
leftmost element being zero.

By default, the number of wires generated to encode an enumerated
type will be the smallest possible n, where the number of elements is
2n. (It will, for example, require three wires to represent an
enumerated type with more than four but less than nine different
values.)



Language Structure

2-14 VHDL Reference Manual

The Std_ulogic and Std_logic Data Types

Std_ulogic (which is the base type of the more-commonly used
resolved type std_logic) is a data type defined by IEEE standard 1164,
and defined in the file ieee.vhd. Std_ulogic is an enumerated type, and
has the following definition (from ieee.vhd):

type std_ulogic is (
'U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z' -- High Impedance

'W' -- Weak Unknown

'L' -- Weak 0

'H' -- Weak 1

'-' -- Don't care

);

The std_ulogic (or std_logic) data type is very important for both
simulation and synthesis. Std_logic includes values that allow you to
accurately simulate such circuit conditions as unknowns and high-
impedance states. For synthesis purposes, the high-impedance and
don't-care values provide a convenient and easily recognizable way to
represent three-state enables and don't-care logic. For synthesis, only
the values ‘0’, ‘1’, ‘Z’, and ‘-’ have meaning and are supported. The
version of std_logic_1164 defined in the file ieee.vhd includes an
enum_encoding attribute that results in each object of type std_ulogic
or std_logic being synthesized into a single wire.

User Defined Types and Subtypes

In addition to the standard types, you can define your own types which
may be scalars, arrays, or records. VHDL also allows subtypes, which
are simply a mechanism to define a subset of a type.

The use of types other than bit and bit_vector (or std_logic and
std_logic_vector) can make your design much easier to read. It is good
VHDL coding  practice to put all your type definitions in a package and
make the contents of that package visible with a use statement. The
following example shows how a subtype of integer is defined in a
package and referenced in the rest of the design:

package type_defs is
    subtype very_short is integer range 0 to 3;
end type_defs;

use work.type_defs.all;    -- use clause

entity counter is
    port (clk: in Boolean; p: inout very_short);
end counter;

architecture behavior of counter is
begin
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    process(clk)
    begin
        if clk and clk'event then
            p <= p + 1;
        end if;
    end process;
end behavior;

In this example, type integer was used because the "+" operator is
defined for integers but not for bit_vectors.

The most common user-defined types are enumerated types, described
in the previous section.

Types and Logic Synthesis

In VHDL, types are used for type checking and for operator overload
resolution (a situation in which two or more operators or functions
have the same name, but specify different argument types). For logic
synthesis, each type declaration also defines the encoding and number
of wires to be generated. For subtypes, checking and overloading use
the base type of the subtype. Each subtype declaration defines a
subset of its base type and can specify the number or wires (directly or
indirectly) and possibly the encoding scheme.

During compilation, ports with types that synthesize to multiple wires
are renamed by appending _n_, where n is an incremented integer
starting from zero.

Type Conversions

Because VHDL is strongly typed, and not all operations are supported
for all standard data types, and it is sometimes necessary to convert
from one type to another. A good example of this is the previous
example, which used an integer data type to describe a counter. What
if the design required (for external interface reasons) that all I/O ports
be of type std_logic? Since there is no pre-defined + operator for non-
numeric types such as std_logic, it is necessary to either overload the
+ operator (by writing a new + function for std_logic_vector data
types) or convert the type from std_logic_vector to integer, and then
from integer back to std_logic_vector as shown below:

library ieee;
use ieee.std_logic_1164.all;
entity counter is
    port (clk: in std_logic;
          p: inout std_logic_vector(1 downto 0);
end counter;

library dataio;
use dataio.std_logic_ops.all;

architecture behavior of counter is
begin
    process (clk)
    begin
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        if clk = '1' and clk'event then
            p <= To_Vector(2,To_Integer(p) + 1);
        end if;
    end process;
end behavior;

The example shown makes use of the package std_logic_ops in the
dataio library provided with the VHDL synthesizer. This library includes
commonly-used type conversion functions (such as To_Integer and
To_Vector).

Operators
VHDL includes the following kinds of operators:

• Logical

• Relational

• Arithmetic

Logical Operators

Logical operators, when combined with signals and/or variables, are
used to create combinational logic. VHDL provides the following logical
operators:

and
or
nand
nor
xor
not

These operators are defined for the types bit , std_ulogic (which is the
base type of std_logic) and Boolean, and for one-dimensional arrays
of these types (for example, an array of type bit_vector or
std_logic_vector).

Relational Operators

Relational operators are used to create equality or magnitude
comparison functions. VHDL provides the following relational
operators:

= Equal to
/= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

The equality operators ( = and /= ) are defined for all VHDL data
types. The magnitude operators ( >=, <=, >, < ) are defined for
numeric types, enumerated types, and some arrays. The resulting type
for all these operators is Boolean.
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Arithmetic Operators

Arithmetic operators are used to create arithmetic functions. VHDL
provides the following arithmetic operators:

+  Addition
-    Subtraction
*    Multiplication
/    Division
mod Modulus
rem Remainder
abs  Absolute Value
**    Exponentiation

These operators are defined for numeric types such as integer and
real.

Note:  Using arithmetic operators in a design can result in very large
amounts of combinational logic being generated.

Overloading Operators

In addition to the predefined operators, VHDL allows you to create new
operators, or to overload existing operators to support alternate types
of arguments or to give them new meanings.  For example, Synario
supplies overloaded functions defining the relational operators listed in
the previous section for type bit_vector as part of the package
bit_ops contained in the file \synario\lib5\dataio.vhd. Overloaded
relational operators for std_logic_vectors are supplied as part of the
package std_logic_ops which is found in the same file. Note that these
overloaded operators treat bit_vectors and std_logic_vectors as
unsigned quantities.

VHDL Attributes
VHDL has many predefined attributes that allow access to information
about types, arrays, and signals. For a complete list of the supported
attributes and their definitions, see Appendix A, “Quick Reference.”
Examples of attributes used to modify a type are shown below. In this
example, the 'high and 'low attributes are used to determine the
highest and lowest values of a type:

    integer'high    -- has a value of 2147483647
    integer'low     -- has a value of -2147483647

To declare a subtype of type integer, use the 'high and 'low
attributes to determine the resulting new upper and lower bounds of
the type :

    subtype shorter is integer range 0 to 100;
    shorter'high   -- has a value of 100
    shorter'low    -- has a value of 0

Attributes can also be combined, as in:

    shorter'base'high        -- has a value of 2147483647
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When used with an array, the 'high attribute has a value of the
highest array index:

    type my_array is array (0 to 99) of Boolean;
    variable info : my_array;
    info'high             -- has a value of 99

There is a set of attributes that gives access to information about
signal waveforms. Most of these signal attributes are for simulation,
and have no other meaning. There is one signal attribute, however,
that is often used to describe clock logic. You can use 'event on
signals to specify edge sensitivity, usually in combination with a value
test to specify a rising or falling edge:

    signal clock : Boolean;
    if not clock and clock'event  -- falling edge.

Note:  An alternative to using the "clock and clock'event" method of
specifying a clock edge is to use the rising_edge() function provided
with the IEEE 1164 library.
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3.  How to Write
Synthesizable VHDL

The hardware implementation of a design written in VHDL depends on
many factors. Coding conventions, fitter technology, and optimization
options are all factors. The general nature of a design also has a large
impact on its suitability for synthesis to a particular device,
independent of the method used to describe the design.

Not all designs can be synthesized. Many VHDL designs (which are
often referred to as models for simulation) are not suitable for
synthesis. These include high level performance models;
environmental models (test benches) for stimulus/response; or system
models that include a mixture of software, hardware, and physical
aspects. For the purposes of logic synthesis, the VHDL synthesizer
must assume that the entire VHDL design describes digital logic that is
to be implemented in hardware.

Hardware design — and design for synthesis in particular — adds
several additional constraints that must be considered above and
beyond the requirements for simulation. One example of this is a gated
clock . A gated clock may not be an issue for simulation, since values
may be written to a computer’s memory without concern for electrical
glitches. When designing for synthesis, however, care must be taken
to ensure that the circuit described will actually control the clocking of
memory elements in a manner appropriate for the target hardware.

A simulation model may also describe the timing characteristics of a
design. Timing specifications (such as inertial or transport delays) are
ignored by the VHDL synthesizer, and the actual timing behavior of the
design depends on the architecture and mapping of the target device.
For this reason, a VHDL model that depends on the timing for correct
operation may not synthesize to the expected result when moved from
one target device to another.

Simulation models may describe unbounded conditions (such as loops
that have no termination, or integers that have no range) that are
impossible represent in hardware. In some cases (such as infinite
loops) the synthesis tool will produce an error and exit, while in other
cases (such as unbounded integers) the VHDL synthesizer will assume
a default representation (for example, 32 bits), which may or may not
result in the expected circuit being generated.
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In addition, a VHDL design written for simulation may use enumerated
types to represent the encoding of a group of wires, perhaps as part of
a symbolic state machine description. A design may also use
enumerated types to represent the electrical characteristics on a signal
wire (such as high impedance, resistive, or strong). In this case, the
VHDL synthesizer has no way to distinguish the meaning (in terms of
how the values should be represented in hardware) of each circuit.
Unless you have provided an encoding for these types (using the VHDL
synthesis custom attribute enum_encoding described in this
chapter), the VHDL synthesizer must assume a default encoding for all
enumerated types.

Optimization Strategies

Most, but not all, PLDs are constructed with an input logic array (the
and array) and output register macrocells that are fed by an or gate.
These devices are optimized for wide sum-of-products logic  functions.
The macrocells in these devices typically include three-state buffers
and one or more possible feedback paths back into the array. Most
FPGAs, on the other hand, are constructed with smaller basic logic
elements (such as 4- or 5-input lookup  tables, or multiplexers). The
VHDL synthesizer, and other processes invoked by the Project
Navigator, include a number of options (properties) that can be
modified to optimize the design for the target device architecture. In
most cases, the default property values (which are set depending on
the device you have selected) will result in the most efficient
implementation. If you want to experiment with different optimization
properties, refer to the on-line help for information about each of the
available properties.

Note:  An example of modifying VHDL Synthesis and Design Fitting
properties can be found in in the Craps Game example, in the tutorials
chapter of the VHDL Entry manual.

Describing Combinational Logic
This section describes the relationship between basic VHDL statements
and the resulting synthesized combinational logic. Most of the
operators and statements that are used to describe combinational logic
are the same as found in any programming language. As in a
programming language, some operations take more time (path delays)
to execute in hardware, and some require more space (in this case,
device resources) to implement. Some VHDL operations are more
expensive to synthesize into logic than others because they require
more gates to implement. This section describes the relative costs
associated with various combinational operations, and the kind of
circuitry you can expect to get out of synthesis.
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Constants and Types

The context in which an operator is used effects the generated
circuitry. Using constant values or simple one-bit data types results in
the most compact circuitry, while complex data types (such as arrays)
in an expression result in correspondingly more circuitry.

If one operand of a combinational expression is a constant, then less
logic is generated. If both operands are constants, the logic can be
collapsed during compilation and the cost of the operation is zero
gates. Using constants wherever possible means that the design
description will not contain unwanted functionality, will synthesize
faster and produce a more efficient implementation.

Certain operators in VHDL are restricted to specific types, generally
following the programming language conventions which are given in
the following subsections. These subsections describe the following
kinds of operators:

• Logical Operators

• Relational Operators

• Arithmetic Operators

Logical Operators

VHDL provides the following logical operators:

and

or

nand

nor

xor

not

These operators are defined for the types bit and Boolean, and for
one-dimensional arrays of these types (for example, an array of type
bit_vector). These operators are also defined for the IEEE 1164
std_logic (or std_ulogic), and std_logic_vector data types (if the
ieee library and std_logic_1164 package are included in your
design). The generation of logic from language constructs is
reasonably direct, and results in an implementation in gates as shown
in the following two examples.

Example 1:

entity logical_ops_1 is
    port (a, b, c, d: in bit;  m: out bit);
end logical_ops_1;

architecture example of logical_ops_1 is
    signal e: bit;
begin
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    m <= (a and b) or e; --concurrent signal assignments
    e <= c xor d;
end example;

Example 2:

entity logical_ops_2 is
    port (a, b: in bit_vector (0 to 3);
          m: out bit_vector (0 to 3));
end logical_ops_2;

architecture example of logical_ops_2 is
begin
    m <= a and b;
end example;

Figure 3-1 shows how these examples are implemented in logic. In
the first example, notice that the logic is shown in a multilevel
implementation. In the logic actually generated, the logic for m will be
a large sum-of-products function with the exclusive-or function (signal
e) expanded into and/or logic and preserved (in a multilevel logic
structure) or flattened into a larger two-level sum-of-products
representation. The actual form of logic generated will depend on the
optimization options chosen in the Project Navigator.

The second example shows how bit_vectors are expanded and
processed. The and operation is distributed through the bit_vector
data for m, as you would expect.

Figure 3-1: Logical Operators
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Relational Operators

VHDL provides relational operators as shown in Table 3-1.

Table 3-1: Relational Operators

Operator Description

= Equal

/= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The equality operators ( = and /= ) are defined for all VHDL data
types. The magnitude operators ( >=, <=, >, < ) are defined for
numeric types, enumerated types, and some arrays. The resulting
single-bit type for all these operators is Boolean. In addition to the
built-in relational operators, overloaded versions of these operators are
supplied in the packages bit_ops and std_logic_ops (found in the file
\synario\lib5\dataio.vhd) for bit_vector and std_logic_vector types.
The overloaded operators found in these packages treat bit_vectors
and std_logic_vectors as unsigned quantities.

The simple comparisons (equal and not equal) are more efficient to
implement (in terms of gates or product terms) than the magnitude
operators. To illustrate, the first example below uses an equal operator
while the second uses a greater-than-or-equal-to operator. As you can
see from the schematic of Figure 3-2, the second example uses more
than twice as many gates as the first.

Example 1:
entity relational_ops_1 is
    port (a, b: in bit_vector (0 to 3); m: out Boolean);
end relational_ops_1;
architecture example of relational_ops_1 is
begin
    m <= a = b;
end example;

Example 2:
entity relational_ops_2 is
    port (a, b: in integer range 0 to 3; m: out Boolean);
end relational_ops_2;
architecture example of relational_ops_2 is
begin
    m <= a >= b;
end example;
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Arithmetic Operators

The arithmetic operators in VHDL are defined for numeric types
(integer and real). The operators are listed in Table 3-2. In addition,
overloaded versions of the + and - operators are supplied in the
packages bit_ops and std_logic_ops for the types bit_vector and
std_logic_vector, respectively.

Note:  The VHDL synthesizer does not distinguish between integer and
real number values. Floating point values are constrained to the same
range of values as integers.

Figure 3-2: Relational Operators

Table 3-2: Arithmetic Operators

Operator Description

++ Addition
= Subtraction
* Multiplication
/ Division
mod Modulus
rem Remainder
abs Absolute Value
** Exponentiation
While the addition and subtraction operators (+, -) are somewhat
expensive in terms of gates required, the multiplication operators  (*,
/, mod, rem) are extremely expensive. The VHDL synthesizer does
make special optimizations, however, when the right hand operator is
a constant and an even power of 2.
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The absolute (abs) operator is not expensive to implement. The **
operator is only supported when its arguments are constants.

The following example illustrates the logic generated for an addition
operation:

package example_arithmetic is
    type small_int is range 0 to 7;
end example_arithmetic;

use work.example_arithmetic.all;

entity arithmetic is
    port (a, b: in small_int; c: out small_int);
end arithmetic;
architecture example of arithmetic is
begin
    c <= a + b;
end example;

Figure 3-3 shows the logic generated for this example in schematic
form. Again, this logic may be collapsed into a sum-of-products (2-
level) form during processing by the VHDL synthesizer and device
fitting.

Figure 3-3: Arithmetic Operators
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Shift Operators

The shift operators in VHDL are defined for the types bit and boolean.
In addition, the package std_logic_ops found in the file
\synario\lib5\dataio.vhd supplies overloaded operators for type
std_logic_vector. The left-hand argument of these operators must be
an array type (such as bit_vector or std_logic_vector) and the right-
hand argument must be an integer. The return value is always of the
same type as the left-hand argument. The operators are listed in
Table 3-3.

Table 3-3: Shift Operators

Operator Description

sll Shift Left Logical

srl Shift Right Logical

sla Shift Left Arithmetic

sra Shift Right Arithmetic

rol Rotate Left Logical

ror Rotate Right Logical

The shift operators are not expensive to implement if the right operand
(which must be an integer type) is a constant value. If the right
operand is not a constant (and depends on a signal) then the logic can
be quite expensive to implement.

Describing Conditional Logic
Conditional logic is combinational logic that implements a multiplexer-
like function.

The two forms of concurrent statements used to describe conditional
logic are:

• Conditional signal assignment

• Selected signal assignment

There are also two forms of sequential statements for describing
conditional logic:

• If statement

• Case statement

These statements are discussed individually below.
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Concurrent Statement: Conditional Signal Assignment

The following is an example of a conditional signal assignment:

entity control_stmts is
    port (a, b, c: in Boolean;  m: out Boolean);
end control_stmts;

architecture example of control_stmts is
begin
    m <= b when a else  c;
end example;

Note:  In IEEE standard 1076-1993, the else clause is optional. If you
do not provide an else clause, however, the resulting circuit will
probably include a latch, which may not be the desired result.

Concurrent Statement: Selected Signal Assignment

A selected signal assignment uses the with statement, and must
include all possible cases. The others case ensures that all cases are
covered.

The following is an example of a selected signal assignment:

entity control_stmts is
    port (sel: bit_vector (0 to 1); a,b,c,d: bit;
          m: out bit);
end control_stmts;

architecture example of control_stmts is
begin
    with sel select
        m <= c    when b"00",
        m <= d    when b"01",
        m <= a    when b"10",
        m <= b    when others;
end example;

If Statement

The condition in an if statement must evaluate to true or false (a
Boolean type). The following example illustrates the if statement:

entity control_stmts is
    port (a, b, c: in Boolean;  m: out Boolean);
end control_stmts;

architecture example of control_stmts is
begin
    process (a, b, c)
        variable n: Boolean;
    begin
        if a then
            n := b;
        else
            n := c;
        end if;
        m <= n;
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    end process;
end example;

Case Statement

Like the with statement, VHDL requires that all the possible conditions
be represented in the condition of a case statement. To ensure this,
use the others clause at the end of a case statement to cover any
unspecified conditions.

Note:  Since std_ulogic and std_logic types have nine possible values
(instead of two possible values for bit types), you should always
include an others clause when using these types.

The following example illustrates the case statement:
entity control_stmts is
    port (sel: in bit_vector (0 to 1); a,b,c,d: in bit;
          m: out bit);
end control_stmts;

architecture example of control_stmts is
begin
    process (sel,a,b,c,d)
    begin
        case sel is
            when b"00"  => m <= c;
            when b"01"  => m <= d;
            when b"10"  => m <= a;
            when others => m <= b;
        end case;
    end process;
end example;

Schematic representations of the if and case logic generated for these
two examples are shown in Figure 3-4.

Figure 3-4: Control Statements
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Describing Replicated Logic
VHDL provides the following subprograms and looping constructs for
creating replicated logic:

• Function

• Procedure

• Loop Statement

• Generate Statement

Functions and procedures are collectively referred to as
subprograms. Generate is a concurrent loop statement. These
constructs are synthesized to produce logic that is replicated once for
each subprogram call, or once for each iteration of a loop.

Functions and Procedures

Functions are always terminated by a return statement, which returns
a value. A return statement may also be used in a procedure, where it
never returns a value.

The following  example illustrates the use of a function:
entity func is
    port (a: in bit_vector (0 to 2);
          m: out bit_vector (0 to 2));
end func;

architecture example of func is
    function simple (w, x, y: bit) return bit is
    begin
        return (w and x) or y;
    end;
begin
    process (a)
    begin
        m(0) <= simple(a(0), a(1), a(2));
        m(1) <= simple(a(2), a(0), a(1));
        m(2) <= simple(a(1), a(2), a(0));
    end process;
end example;
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A procedure differs from a function in that there is no return value, and
the arguments of the procedure have modes (in, out, or inout):

entity proc is
    port (a: in bit_vector (0 to 2);
          m: out bit_vector (0 to 2));

end proc;

architecture example of subprograms is
    procedure simple (w, x, y: in bit; z: out bit) is
    begin
        z <= (w and x) or y;
    end;
begin
    process (a)
    begin
        simple(a(0), a(1), a(2), m(0));

        simple(a(2), a(0), a(1), m(1));

        simple(a(1), a(2), a(0), m(2));
    end process;
end example;

For both functions and procedures, the VHDL synthesizer will generate
a block of logic for each instance (unique reference to) the function or
procedure.

Loop Statements

If possible, loop ranges should be expressed as constants. Otherwise,
the logic inside the loop may be replicated for all the possible values of
the loop ranges, which can be very expensive in terms of gates. Loop
statements may be terminated with an exit statement, and specific
iterations of the loop statement may be terminated with the next
statement.

The following example illustrates the use of a loop statement:

entity loop_stmt is
    port (a: in bit_vector (0 to 3);
          m: out bit_vector (0 to 3));
end loop_stmt;

architecture example of loop_stmt is
begin
    process (a)
        variable b:bit;
    begin
        b := 1;
        for i in 0 to 3 loop     -- no need to declare i
            b := a(3-i) and b;
            m(i) <= b;
        end loop;
    end process;
end example;
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While statements are also supported by the VHDL synthesizer, with
the constraint that the loop termination depend only on a value that
can be determined at the time of synthesis (for example, a metalogic
value. See Appendix B, “Limitations,” for more information about
metalogic values).

The following example demonstrates the use of a while loop:

entity while_stmt is
    port (a: in bit_vector (0 to 3);
          m: out bit_vector (0 to 3));

end while_stmt;

architecture example of while_stmt is
begin
    process (a)
        variable b: bit;
        variable i: integer;
    begin
        i := 0;
        while i < 4 loop
            b := a(3-i) and b;
            m(i) <= b;
        end loop;
    end process;
end example;

Unconstrained loops (such "while true" loops) are not supported in
synthesis.

Example schematics for the loop and subprogram are shown in Figure
3-5.

Generate Statements

Generate statements are used to replicate one or more concurrent
statement. The generate statement has two forms: for and if.

For Generation Statement

Following is an example of a for generation statement:

Gen1: for i in 0 to 3 generate   
SM: mod1 port map(A(i),B(i),Y(i));
end generate Gen1;

When processed, this statement expands into four statements as
follows:

SM(0): mod1 port map(A(0),B(0),Y(0));
SM(1): mod1 port map(A(1),B(1),Y(1));
SM(2): mod1 port map(A(2),B(2),Y(2));
SM(3): mod1 port map(A(3),B(3),Y(3));

If Generation Statement

The if generation statement is used to describe a conditional selection
of concurrent statements:
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Figure 3-5: Loop and Subprogram Statements

Gen2: if test_flag = 1 generate
    test_pins <= current_state;
end generate Gen2;

When an if generation statement is used, the conditional expression
(in this case "test_flag = 1") must be a metalogic value (one that does
not depend on a signal or variable.)  For example, the value of i, used
in the previous for generation statement, is a static value and can be
used in a nested if generation statement, as follows:

for i in 0 to 3 generate
   if i /= 2 generate
      SM: modl port map A(i),B(i),Y(i);
   end generate;
end generate;
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Describing Sequential Logic
This section describes in detail how various kinds of registered
sequential circuits can be described using VHDL, and how these
descriptions are synthesized into actual circuitry (using latches and
flip-flops).

Describing sequential logic in VHDL is very much like programming in
a conventional programming language, and less like programming
using a traditional PLD programming language. There is no register
assignment operator and no special attributes or “dot extensions” for
specifying clocks and resets. In VHDL, you must describe the behavior
of a sequential logic element such as a latch or flip-flop, as well as
specifying the behavior of more complex sequential machines.

The behavior of a sequential logic element (latch or flip-flop) is to save
a value of a signal over time. This section shows how such behavior
may be described. This description is extended to add the behavior of
set and reset (in both their synchronous and asynchronous forms).

There are often several ways to describe a particular behavior, and the
following examples typically show only two of the many possible
styles. There is no “right” style, however. Your choice of style should
simply be that which helps you specify the clearest description of your
design.

Note:  If you deviate from commonly-used VHDL coding conventions
(styles) such as those described in this manual, then you may risk
creating designs that are not portable to other synthesis tools.

There are two commonly-used methods used to describe registered
behavior: conditional (if-then) specifications and wait statements.

Conditional Specification

Describing sequential logic with a conditional specification relies on the
inherent behavior of a VHDL if statement. The convention used for
conditional statements that describe clocking logic is:

process (clk)
    begin
    if clk='1' then
        y <= a;
    else
            -- default: holds previous value
    end if;
end process;

This set of statements describes the behavior of a latch; if the clock is
high the output (y) gets a new value. If the clock is not high then the
output retains its previous value. This is unlike a PLD programming
language such as ABEL-HDL, where the else condition results in the
signal going to zero. If both conditions had been written as
assignments, then the behavior would be that of a mux:
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process(clk)
    begin
    if clk='1' then
        y <= a;
    else
        y <= b;
    end if;
end process;

Note:  This example would result in an error during synthesis; because
the conditional logic is completely specified using an else statement,
the process describes a combinational function. The signals a and b are
both inputs to the combinational function, and are therefore required
to be in the sensitivity list.

This convention can be summarized: if an if statement is not
completely specified, then a flip-flop or latch primitive is implied.
Incompletely specified assignments within case statements can also
result in latches being generated, but these latches are constructed
using combinational feedback rather than latch primitives. If the if
statement is completely specified (using an else clause), a
combinational function is implied. There is no significance to any of the
signal names used in these or any other examples. The clock input (in
this case clk) can have any name. Implied flip-flops and latches can
occur on either signals or variables.
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Alternatively, you can describe a latch as transparent low by inverting
the conditional logic:

process(clk)
    begin
    if clk='1' then
            -- hold
    else
        y <= a;
    end if;
end process;

Or more concisely:

process(clk)
    begin
    if clk='0' then
        y <= a;
    end if;
end process;

A rising edge flip-flop is created by making the clock input edge
sensitive:

process(clk)
    begin
    if clk'event and clk='1' then
        y <= a;
    end if;
end process;

If you are using the IEEE 1164 std_logic (or std_ulogic) data types,
you can simplify the description of clock edges (and improve the
accuracy of simulations) by using the rising_edge() function:
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process(clk)
    begin
    if rising_edge(clk) then
        y <= a;
    end if;
end process;

In all these cases, the number of registers or the width of the mux are
determined by the type of the signal y.

Wait Statement

The second method uses a wait statement within the process:

process
    wait until expression;
    .
    .
    .
end process;

This statement suspends evaluation (over time) until an event occurs,
and the expression evaluates to true. When a wait statement is used
in a process, no process sensitivity list is required (or allowed). A flip-
flip may be described as:

process
    wait until clk'event and clk='1'
    y <= a;
end process;

A constraint of the VHDL synthesizer is that wait statements must be
located at either the beginning or end of a process, and there may not
be more than one wait statement in a process.

Note:  Wait statements are not recommended for use in synthesizable
designs. If-then conditional statements are a more universally
accepted method of describing registered logic.
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Latches

The following three examples each describe a level sensitive latch with
an and function connected to its input. In all three of these examples
the signal y retains its current value unless the clock input (clk) is
high.

Example 1:

This example uses a process statement and conditional (if)
statement. The sensitivity list contains the clock input and two data
inputs because when clk is high the output y changes asynchronously
with any change in a or b:

    process (clk,a,b)
    begin
        if clk='1' then
            y <= a and b;
        end if;
    end process;

Example 2:

This example uses a procedure statement in combination with a
concurrent procedure call.  In this example the procedure is called
twice to generate two latches from the declared procedure:

architecture dataflow of latch is
    procedure my_latch(signal clk,a,b: in Boolean;
        signal y : out Boolean)
    begin
        if clk='1' then
            y <= a and b;
        end if;
    end;
begin
    latch_1: my_latch (clock,input1,input2,outputA);

    label_2: my_latch (clock,input1,input2,outputB);
end dataflow;

Example 3:

This example uses a concurrent conditional assignment to describe a
latch function for y. Note that y is used as an input to the conditional
statement as well as being used as the output:

architecture dataflow of latch is
begin
    y <= a and b when clk else y;
end dataflow;

Flip-flops

The following four examples describe an edge sensitive flip-flop with
an AND function connected to its input. In all these cases the signal y
retains its current value unless the clock is changing.
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Example 1:

A process statement for a flip-flop is identical to the first latch
example, above, with addition of the 'event attribute to specify an
edge. The sensitivity list for the process contains only the clock input,
since the output of a flip-flop only changes when the clock transitions
from low to high:

    process (clk)
    begin
        if clk='1' and clk'event then
            y <= a and b;
        end if;
    end process;   -- A Process statement :

Example 2:

This example shows how to use a wait statement to describe a flip-
flop. When a wait statement is used, there is no sensitivity list
associated with the process statement. To accurately describe an edge
triggered flip-flop on the output, the wait statement must be the first
statement in the process:

    process
    begin
        wait until clk'event and clk='1';  -- rising edge
        y <= a and b;
    end process;

Example 3:

This example uses a procedure declaration, and is identical to the
second latch example, above. The only difference is the addition of the
'event attribute to define the clock as an edge triggered signal:

architecture dataflow of flipflop is
    procedure my_ff(signal clk,a,b: Boolean;
        signal y : out Boolean)
    begin
        if clk='1' and clk'event then
            y <= a and b;
        end if;
    end;
begin
    ff_1: my_ff (clock,input1,input2,outputA);

    ff_2: my_ff (clock,input1,input2,outputB);
end dataflow;

Example 4:

This example shows how to use a concurrent conditional assignment to
describe the flip-flop:

    architecture concurrent of my_register is
    begin
        y <= a and b when clk='1' and clk'event;
    end concurrent;
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Note:  In examples 1, 3 and 4, above, the clk and clk'event
condition expression can be replaced with the IEEE 1164
rising_edge() function, if std_logic (or std_ulogic) is used for the
Clk signal. Using rising_edge() can improve the accuracy of
simulations, particularly in cases where you are simulating transitions
from uninitialized states.

Note:  The concurrent conditional assignment shown in example 4 is
allowed in the 1076-1993 VHDL specification, and is not supported in
earlier versions of the language.

Gated Clocks and Clock Enable

The examples in this chapter have assumed that the clock is a simple
signal. In principle, any complex Boolean expression could be used to
specify clocking. The use of a complex clock expression implies a gated
clock.

As with any kind of hardware design, there is a risk that gated clocks
may cause glitches in the register clock, and hence produce unreliable
hardware. You need to be aware of the constraints of the target
hardware and, as a general rule, use only simple logic in the wait or
if-then expression.

It is possible to specify a gated clock with a statement such as:

    if clk='1' and clk1'event and ena then
        q <= d;
    end if;

which implies a logical and in the clock line. If you want to use a clock
enable feature in the target device, however, you should use nested if
statements as follows:

    if clk='1' and clk1'event then
        if ena then
            q <= d;
        end if;
    end if;

This style causes a clock enable feature to be specified in the target
architecture if the Generate Clock Enable property of the Synthesize
VHDL process is specified in the Project Navigator. If the Generate
Clock Enable property has not been specified, multiplexer logic will be
generated to hold the value of q when ena is low.
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Synchronous Set/Reset

To add the behavior of synchronous set or reset you can simply add a
conditional assignment to a constant value immediately inside the
clock specification. This is a VHDL coding convention that is recognized
as a hardware reset by the VHDL synthesizer. Other methods of reset
control may have the desired behavior, but do not result in a hardware
reset feature being utilized.

The following example shows a simple preset of a 1-bit (Boolean)
output:

    process(clk)
    begin
        if clk='1' and clk'event then
            if set='1' then
                y <= '1';
            else
                y <= a and b;
            end if;
        end if;
    end process;

The example sets y to true when the set input is high during a rising
clock edge.

The next example shows how a constant value can be specified to
reset the output to an arbitrary encoding. When this example is
processed by VHDL, a mixture of reset and preset features is utilized to
create the desired reset output encoding:

    process (clk)
    begin
        if clk='1' and clk'event then
            if init='1' then
                y <= 7;      -- y is type integer
            else
                y <= a + b;
            end if;
        end if;
    end process;

Note:  If the target device supports only a reset feature and does not
have a preset feature, then you can use the Generate Reset Logic
property  of the VHDL synthesizer to ensure that only resets are
generated.

Asynchronous Set/Reset

To describe the behavior of asynchronous set or reset, the initialization
is no longer within the control of the clock. Instead, simply add a
conditional assignment to a constant immediately outside the clock
specification. Because the outputs must change asynchronously when
the reset input is high, the reset input must be included in the
sensitivity list of the process:

process (clk,reset)
begin
    if reset='1' then
        y <= false;       -- y is type Boolean
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    elsif clk='1' and clk'event then
        y <= a and b;
    end if;
end process;

Devices with both an asynchronous reset and preset are also
supported, as long as the reset overrides the preset condition. For
example:

process (clk, reset, preset)
begin
   if reset='1' then
        y <='0'; -- must be a constant value
   elsif preset='1' then
        y <='1'; -- must be a constant value
   elsif rising_edge(clk) then
        y <= a and b;
   end if;
end process;

Asynchronous Reset/Preset

You can combine the asynchronous reset and preset conditions in a
single process:

process (clk, reset, preset)
begin
   if (reset = '1') then
        q <= '0';
   elsif (preset = '1') then
        q <= '1';
   elsif (rising_edge(clk)) then
        q <= d;
   end if;
end process;

Note that the asynchronous reset condition overrides the preset, as is
generally the case in most flip-flops that actually have both reset and
preset.
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You can combine the asynchronous reset and preset to create an
asynchronous load:

library ieee;
use ieee.std_logic_1164.all;
library dataio;
use dataio.std_logic_ops.all;

entity asyn_load_cnt is
   port(
   clk : in std_logic;
   ce : in std_logic;
   reset : in std_logic;
   preset : in std_logic;
   load : in std_logic;
   d : in std_logic_vector(7 downto 0);
   q : buffer std_logic_vector(7 downto 0));
end;

architecture behavioral of asyn_load_cnt is
   signal next_q : std_logic_vector(7 downto 0);
begin

   next_q <= q + '1';

   process(clk, reset, preset, load, d)
   begin
      for i in q'range loop
         if (reset = '1') or (load = '1' and d(i) = '0') then
            q(i) <= '0';
         elsif (preset = '1') or (load = '1' and d(i) = '1') then
            q(i) <= '1';
         elsif (rising_edge(clk)) then
            if (ce = '1') then
               q(i) <= next_q(i);
            end if;
         end if;
      end loop;
   end process;
end behavioral;

This logic defines an 8 bit up counter, with asynchronous reset, preset,
load, and clock enable. Since the VHDL synthesis compiler requires
that the value assigned by the reset or preset condition be a constant
expression, a loop construct inside the process generates the logic for
each flip-flop individually.

Describing Finite State Machines
This section describes the relationship between various types of finite
state machines (FSMs), the VHDL description methods that are most
commonly used to specify them, and the logic that is generated as a
result of synthesis. Each example illustrates a single state machine.
(This is not a constraint of VHDL or the VHDL synthesizer, just a
simplification. Multiple state machines are supported in VHDL, and the
different machines can operate independently using multiple clocks.)
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Template State Machine

The recommended method for describing synthesizable state machines
in VHDL is to use an enumerated type to define the states of the
machine, and use two processes to clearly distinguish between the
registered portion of the machine (the state registers and registered
state machine outputs) and the combinational portion (the state
transition logic and combinational state machine outputs). The
following sample state machine provides a template that you can use
to create your own state machine designs:
library ieee;
use ieee.std_logic_1164.all;

entity machine is
   port (clk,reset: in std_logic;
         state_inputs: in std_logic_vector (0 to 1);
         comb_outputs: out std_logic_vector (0 to 1));
end machine;

architecture behavior of machine is
    type states is (st0, st1, st2, st3);
    signal present_state, next_state: states;
begin
    register: process (reset,clk)
    begin
        if reset = '1' then
            present_state <= st0;        -- async reset to st0
        elsif rising_edge(clk) then
            present_state <= next_state; -- transition on clock
        end if;
    end process;
    transitions: process(present_state, state_inputs)
    begin
        case current_state is            -- describe transitions
            when st0 =>                  -- and comb. outputs
                comb_outputs <= "00";
                if state_inputs = "11" then
                    next_state <= st0;   -- hold
                else
                    next_state <= st1;   -- next state
                end if;
            when st1 =>
                comb_outputs <= "01";
                if state_inputs = "11" then
                    next_state <= st1;   -- hold
                else
                    next_state <= st2;   -- next state
                end if;
            when st2 =>
                comb_outputs <= "10";
                if state_inputs = "11" then
                    next_state <= st2;   -- hold
                else
                    next_state <= st3;   -- next state
                end if;
            when st3 =>
                comb_outputs <= "11";
                if state_inputs = "11" then
                    next_state <= st3;   -- hold
                else
                    next_state <= st0;   -- next state
                end if;
         end case;
    end process;
end behavior;
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This state machine description includes two combinational outputs
(port comb_outputs) that decode the current state of the machine. If
these outputs were registered, rather than combinational, then a third
process would have been written for the outputs, using the clk and
reset inputs in the process sensitivity list.

Note:  Methods for specifying the encoding of enumerated types, and
the impact that these types have on optimization results, are described
later in this chapter in the section, "Enumerated Types".

Feedback Mechanisms

All state machines require some form of feedback to implement the
current state memory and next state decoding. There are two ways to
create feedback in VHDL: using signals and using variables. The
recommended method for state machines is to use signals, as shown in
the previous template example.

Note:  As a general rule, use variables to pass data within a process,
and use signals to pass data outside a process (between concurrent
statements).

Feedback on Signals

The following design demonstrates how signals are used to provide
register feedback. This example uses a process and if-then statement
to provide the clocking function for the flip-flop. The flip-flop output (c)
is fed back and used in the assignment of combinational signal b in the
second process:

architecture example of some_entity is
    signal b: bit;
begin
    process(clk)               -- a sequential process
    begin
      if clk = '1' and clk'event then   -- clock function
        if reset = '1' then
            c <= '0';          -- synchronous reset
        else
            c <= b;            -- load flip-flop from b
        end if;
      end if;
    end process;
    process (a, c)             -- a combinational process
    begin
        b <= a and c;
    end process;
end example;

When relating this circuit to a classic state machine, you can consider
the signal c to the current state register, and signal b to the next state
decode function.

For simple state machine circuits such as this one (or for somewhat
more complex circuits such as counters), a more concise method of
specifying the feedback can be used:
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architecture example of some_entity is
begin
    process (clk)
    begin
      if clk = '1' and clk'event then
        if reset = '1' then
            c <= '0';
        else
            c <= a and c;  -- c is fed back directly
        end if;
      end if;
    end process;
end example;

This method eliminates the intermediate signal b.

Feedback on Variables

Variables exist within a process, and preserve their data as processes
suspend and reactivate. Feedback is created whenever variables are
used (placed on the right hand side of an assignment or used in a
conditional statement) before they are assigned (placed on the left
hand side of an assignment.)

Feedback paths typically contain registers, so to use feedback in a
process you will usually want to insert a conditional statement that
implies a clock into the process. The following example shows how
registered feedback is created (to form a counter function) from the
use of a variable in a process:

    process (clk)
        variable Count: integer range 0 to 255;
    begin
      if clk = '1' and clk'event then
        if reset = '1' then
            Count := 0;
        elsif Count = 255 then
            Count := 0;
        else
            Count := Count + 1; -- Counter feeds back
        end if;
      end if;
      C <= Count;
   end process;

In this example, the counter output (C) is assigned the value of the
variable Count, creating an 8-bit counter on the design output. In the
above example, eight flip-flops are generated for the output C, and the
feedback logic for variable Count is folded into the logic for C.

Note:  Variables only imply registers when used within process
statements. If a variable is declared inside a function or procedure,
the variable is local to the subprogram; it exists only within the scope
of the subprogram.
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Types of State Machines

Classical state machines can be classified as Moore or Mealy machines.
In a Moore machine, the output is a function of the current state only,
and can change only on a clock edge. Mealy machines, on the other
hand, have outputs that are a function of the current state and the
current inputs. The outputs of a Mealy machine may change when any
input changes.

Moore Machine

In the following architecture, F1 and F2 are combinational logic
functions of an arbitrary complexity. A simple state machine
implementation maps each block to a VHDL process:

library ieee;
use ieee.std_logic_1164.all;
entity system is
    port (clock: in std_logic;
          A: in std_logic;
          D: out std_logic);
end system;
architecture moore1 of system is
    signal B, C: std_logic;
begin
    F1: process (A, C)         -- Next state logic
    begin
        B <= F1(A, C);
    end process;
    F2: process (C)            -- Output logic
    begin
        D <= F2(C);
    end process;
    Register: process (clock)  -- State registers
    begin
        if rising_edge(clock) then
            C <= B;
        end if;
    end process;
end moore1;

A block diagram that shows how the three processes of this
architecture are related is shown in Figure 3-6.

Figure 3-6: Moore State Machine
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A more compact description of this architecture could be written as
follows:

architecture moore2 of system is
    signal C: std_logic;
begin
    Combinational: process (C)   -- combinational -logic
    begin
        D <= F2(C);
    end process;
    Registers: process (clock)   -- sequential logic
    begin
        if rising_edge(clock) then
            C <= F1(A, C);
        end if;
    end process;
end moore2;

Output Registers

If the system timing requires that there be no logic between the
registers and the output (the shortest output propagation delay is
desired) then the following architecture can be used:

architecture moore3 of system is
begin
    process (clock)
    begin
        if rising_edge(clock) then
            D <= F(A,D)
        end if;
    end process;
end moore3;

This is the simplest form of a Moore state machine, and is diagrammed
in Figure 3-7.

Figure 3-7: Moore3 State Machine
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Input Registers

If the system timing requires no logic between the registers and the
input (a short setup time is required) the following architecture can be
used:

architecture moore4 of system is
    signal A1, D1 : std_logic;
begin
    Registers: process (clock)
    begin
        if rising_edge(clock) then
            A1 <= A;

            D1 <= D;
        end if;
    end process;
    F1: process (A1, D1)
    begin
        D <= F(A1,D1);
    end process;
end moore4;

The resulting circuitry is diagrammed in Figure 3-8. Note that this
form of a state machine does not map well into most PLD devices.

Figure 3-8: Moore4 State Machine

Mealy Machine

A Mealy machine always requires two processes (or one process for
the machine and separate concurrent statements for the outputs,) as
its timing is a function of both the clock and the data inputs:

architecture mealy of system is
    signal C: std_logic;
begin
    Combinational: process (A,C) -- Mealy outputs
    begin
        D <= F2(A, C);
    end process;

    Registers: process (clock)   -- State machine logic
    begin
        if rising_edge(clock) then
            C <= F1(A, C);
        end if;
    end process;
end mealy;
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Mealy state machines can be written more clearly, however, if three
processes are used in the following style:

architecture mealy of system is
    signal C: std_logic;
    signal B: std_logic;
begin
    Registers: process (clock)  -- State register
    begin
        if rising_edge(clock) then
            C <= B;
        end if;
    end process;
    Transitions: process (A, C) -- Transition logic
    begin
        B <= F1(A, C);
    end process;
    Outputs: process (A,C) -- Mealy outputs
    begin
        D <= F2(A, C);
    end process;
end mealy;

Figure 3-9 shows a block diagram of this type of state machine. The
block labeled F1 represents the combination logic function for the
transition logic, while the block labeled F2 represents a combinational
logic function of the state machine’s current state and the design
inputs.

Figure 3-9: Mealy State Machine

Avoiding Unwanted Latches

When describing state machines in VHDL, you must be careful to avoid
the creation of unwanted asynchronous feedback paths that form
latches. The rules of VHDL state that a signal within a process whose
value is not completely specified (provided with an explicit assignment
for all possible input conditions) will hold its previous value for the
unspecified conditions. Latches can therefore be inadvertently created
by incompletely specifying the transitions from one or more states in a
state machine, or by failing to specify the value of all outputs in the
states of the machine.
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Perhaps the most common mistake made by new VHDL users
(particularly those who have had experience with PLD-oriented
languages) is in assuming that unspecified conditions will have no
effect on the logic of the generated circuit. This is not the case in
VHDL, and you need to be aware of the logic that will be generated for
incompletely specified conditions.

To help you detect and correct situations such as this, the VHDL
synthesizer will display a warning message whenever asynchronous
feedback paths are generated. (You can view these warning messages
by viewing the Process Log in the Project Navigator.)
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4.  How to Control the
Implementation of VHDL

Using Enumerated Types
Enumerated types are very important in VHDL, and are the only way in
which signals that require more than two values (such as those with
output enables) can be described in the language.

For many circuits, most notably state machines, enumerated types can
help to make complex designs more readable, and can also help to
increase the efficiency of the resulting synthesized circuitry.

The VHDL synthesizer also gives you control over the encoding of
enumerated types, by providing you with a special attribute called
enum_encoding.

Enumerated types can reduce combinational logic requirements
because they make it easy to add don’t-care logic to a design. A don’t-
care (for the purpose of logic synthesis) is a circuit condition (a
combination of inputs, for example) under which the resulting output
of the circuit is not important. The VHDL synthesizer (and other
software, such as devices fitters) can take advantage of don’t-care
conditions to reduce the amount of logic required to implement a
combinational logic function.

A Review of Enumerated Types

Enumerated types in VHDL are user-defined (or predefined) data types
that are specified using symbolic representations. The state machine
template example presented earlier in this chapter was one example of
an enumerated type, and was declared with the following statement:

    type states is (st0, st1, st2, st3);

Many of the standard types used in VHDL are actually enumerated
types defined in the standard library (std.vhd) or in the IEEE 1164
library (ieee.vhd). The types bit and Boolean, for example, are
enumerated types with the following definitions (from std.vhd):

    type boolean is (false,true);
    type bit is ('0','1');
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The type std_ulogic  (from which std_logic is derived) is also an
enumerated type, and has the definition (from ieee.vhd):

    type std_ulogic is ( 'U',  -- Uninitialized
                         'X',  -- Forcing  Unknown
                         '0',  -- Forcing  0
                         '1',  -- Forcing  1
                         'Z',  -- High Impedance
                         'W',  -- Weak     Unknown
                         'L',  -- Weak     0
                         'H',  -- Weak     1
                         '-'   -- Don't care
                       );

The std_ulogic (or std_logic) data type is very important for both
simulation and synthesis. Std_logic includes values that allow you to
accurately simulate such circuit conditions as unknowns and high-
impedance states. For synthesis purposes, the high-impedance and
don’t-care values provide a convenient and easily recognizable way to
represent three-state enables and don’t-care logic.

Synthesis of Enumerated Types

When synthesized into logic, enumerated types result in a binary
encoding. Elements in the enumerated type are assigned numeric
values from left to right, with the value of the leftmost element being
zero. For example, the state values defined earlier would be assigned
the binary values 00, 01, 10, and 11 for the states st0, st1, st2 and
st3, respectively.

If the number of elements in the enumerated type is not a power of 2
(for example, there are only three states, instead of four), the
remaining binary encodings are processed as don’t-cares by the VHDL
synthesizer.

The default (binary) encoding for enumerated types is rarely the
optimal encoding for a complex state machine, so it is important to
have a way to override the default with an encoding more appropriate
for the machine being described. The default binary encoding can be
changed if needed, using the enum_encoding attribute that will be
described in this section.

By default, the number of wires generated to encode an enumerated
type is the smallest possible n, where the number of elements is 2n.
(It will, for example, require three wires to represent an enumerated
type with more than four but less than nine different values.) The
enum_encoding attribute allows you to specify no only the encoding of
each member of the type, but the width of the encoding (number of
wires) as well.

Enum_encoding attribute

The VHDL synthesizer supports a custom synthesis attribute for objects
of enumerated types that allows alternate encodings to be specified.
An alternate encoding may be required for a state machine that is
described with enumerated types, or may be required to resolve multi-
valued logic into a single-bit representation.
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An example of a state machine design that uses enum_encoding to
specify a particular (non-sequential) encoding of state values is
presented in the tutorials chapter of the VHDL Entry manual. The
prep4  (complex state machine) example presented in that chapter
uses enum_encoding to specify an encoding that is optimized for a
complex PLD implementation, as well as using explicit assignments to
the ’-’ value to include don’t-care information about the circuit’s
outputs.

An example of resolving multi-valued logic can be found in the
definition for the std_ulogic data type (upon which the type
std_logic is based). As described above, the std_ulogic data type is
defined in the package std_logic_1164 (which is located in the file
ieee.vhd) to have nine possible values: ’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’
and ’-’. If these nine values were given the default binary
enumerations, then any signal of type std_ulogic (or the derived type
std_logic) would require four wires when synthesized, rather than the
intended single wire. To solve this dilemma, the following
enum_encoding attribute specification (which is provided in
ieee.vhd) results in a single-bit (and non-unique) encoding for each
value of the std_ulogic data type:

attribute enum_encoding: string;
attribute enum_encoding of std_ulogic: type is
    "- - 0 1 Z - - - -"

Enum_encoding is a custom attribute recognized by the VHDL
synthesizer (and ignored by other tools, such as simulators) that maps
the elements of an enumerated type into an actual encoding, using 1
of 4 possible enumeration values. The enumerations for each type are
listed in the attribute string (with entries separated by a space
character) and may consist of one or more of the characters shown in
Table 4-1.

Table 4-1: Logical values for enumeration characters

Enumeration
character

Logic Value

0 0

1 1

- Don’t care (for logic optimization)

Z High impedance (implies an output enable)
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Of these four possible values, only the 1 and 0 result in logic being
generated for a signal, so an element of an enumerated type that is
defined using any of the four characters results in only a single wire
being generated. For enumerated type elements that are defined using
the “-” character, the VHDL synthesizer generates a don’t-care for the
signal. This often results in better logic optimization. Enumerated type
elements that are defined using the Z character result in output enable
logic being generated for the associated signal. (This matches the
convention for output enables commonly used in simulation
environments.)

The enum_encoding attribute must be entered as a single string
value. Strings in VHDL cannot span multiple lines, so to enter a long
enum_encoding value, you must concatenate multiple strings using
the ’&’ (concatenate) operator as shown in the following example:

    attribute enum_encoding of states: type is
        "00101 00000 10000 00100 10100 " &

        "01100 01000 10101 10001 11000 " &

        "10011 00011 00001 01101 01001 11001";

“One hot” Enumeration

In addition to the enumeration values shown above, the VHDL
synthesizer supports a special type of enumeration attribute value for
state machines. The following statements define an enumerated type
for a state machine and specify that the state machine is to be
encoded using a one hot (one bit active per state) representation:

type machine is (init, s1, s2, s3, s4);
attribute enum_encoding of machine : type is "one hot";

In this example, the five states of the machine (init, s1, s2, s3, and
s4) are encoded automatically with the values 00001, 00010, 00100,
01000, and 10000, respectively by the VHDL synthesizer. When used
as next and previous state values in a subsequent case statement, the
value of the type is decoded using only that bit that is “hot” (has a
value of 1) for each enumerated value. This results in a dramatic
decrease in the amount of decoding logic required for each condition in
the case statement logic, at the expense of a few additional registers.

Note:  One hot encoding is particularly effective when you are
generating circuits intended for implementation in register-rich
architectures such as FPGAs.

Don’t-cares and Enumerated Types

Unused encodings result in don’t-care conditions, which allow the
VHDL synthesizer to perform additional logic optimizations. Subtypes
use the element encodings of their base, and may result in additional
don’t-care conditions being generated. For example:

The declaration: Is synthesized as:

type direction is
(left, right, up, down);

Two wires with the values 00, 01, 10,
and 11.
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type cpu_op is (execute,
load, store);

Two wires with the values 00, 01, and
10; the binary encoding 11 is a don’t-
care.

subtype mem_op is
cpu_op
range load to store;

Two wires with the values 01 and 10;
the encodings 00 and 11 are don’t-
cares.

Describing Output Enables
Output enables are commonly used in PLD-based designs, but the
VHDL language does not define an explicit output enable function such
as that found in ABEL-HDL or other PLD and FPGA oriented languages.
To describe an output enable, you must write your VHDL design using
the special enumerated value Z and the IEEE 1164 std_logic data
type, or some other enumerated type that includes Z as a possible
value.

Using Std_logic to Describe Output Enables

VHDL does not provide an explicit method for describing a signal that
can be disabled, so various conventions have been adopted for this
purpose. The most common way to describe a three-state signal is to
use the IEEE 1164 std_logic data type, which includes a value of Z as
one of its possible values. The following design uses the std_logic
data type, and describes the disabled state of the output using the Z
constant:

library ieee;
use ieee.std_logic_1164.all;

package example_bus is
    subtype bundle is std_logic_vector (0 to 4);
end example_bus;

use work.example_bus.all;
library ieee;
use ieee.std_logic_1164.all;
entity tbuf is
    port (enable: in std_logic;  a: in bundle;
          m: out bundle);
end tbuf;
architecture example of tbuf is
begin
    process (enable, a)
    begin
        if enable = '1' then
            m <= a;
        else
            m <= "ZZZZZ";
        end if;
    end process;
end example;

Note:  Output enables generated by the VHDL synthesizer correspond
to the three-state output pins found in most PLD and FPGA devices.
They do not correspond to internal tri-states such as those found in
Xilinx FPGAs.
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Controlling Output Inversion
Many common PLDs feature inverted registered outputs, or outputs
that have programmable inverters between the outputs of the flip-flops
and the actual output pins. When designing for these devices, precise
control over the polarity of the outputs is often required. Using
properties of the VHDL synthesizer, you have three options available
for controlling output polarities.

If the target device has outputs with fixed output inversion on all
registered outputs, then the Invert Yes property of the Synthesize
VHDL process should be specified when compiling your design. The
Invert Yes property results in all registered ports in the design being
generated with inverted outputs. This option does not affect the logic
of the outputs as observed on the pins; instead it simply instructs the
VHDL synthesizer to change the inversion of the output pins, then
invert the internal logic polarity (and swap presets and resets as
needed) to preserve the correct pin-to-pin behavior of the circuit.

If the target device has outputs with fixed non-inverted registered
outputs, then you should specify Invert No when processing your
design. This property results in all design outputs being generated with
non-inverting outputs. Once again, the logic of the circuit as observed
in the device output pins remains unaffected, regardless of how the
outputs are described in the VHDL program.

If the target device features programmable output inversion for
registered outputs (as is the case in the P22V10 and the smaller MACH
devices) then you can either select Invert Yes or Invert No, or do not
specify the inversion and let the VHDL synthesizer choose the output
inversion based on how the outputs are used in the design description.

If the Invert property is not specified, the VHDL synthesizer attempts
to infer the inversion of outputs based on the use of inverting signals
in the design.

Note:  Most PLD Device Kits include a flip-flop transformation process
that can adjust output polarities to match the architecture of the target
device. For this reason, you will probably not have to use the Invert
Yes or Invert No property to achieve a successful fit.

The following example shows two design outputs. The o2 output is
described in such a way that it will result in inverted outputs (using a
variable to provide the inversion) while the o1 output is described in a
way that will result in a non-inverted implementation. (Both o1 and
o2 have the same pin-to-pin behavior.)

library ieee;
use ieee.std_logic_1164.all;

entity polarity is
    port (clock : in std_logic;
         a,b: in std_logic;
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         o1,o2: out std_logic);
end polarity;

architecture inversion of polarity is
    signal n2: std_logic;
begin
    process(clock)
    begin
        if rising_edge(clock) then
            o1 <= (a and b);
            n2 <= (not a or not b);
        end if;
    end process;
    o2 <= not n2;
end inversion;
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Controlling Feedback Paths
If the design description specifies feedback, then the VHDL synthesizer
will generate the feedback logic according to how the fed back signal
was used in the design. There are two basic types of feedback
generated from the VHDL synthesizer: macrocell (register) feedback
and pin feedback. The source of the feedback (register or pin) may be
controlled by using appropriate VHDL coding conventions.

If a port of type inout is both read from and written to, (as is the case
for bi-directional I/O) then the pin feedback path is generated. If the
specified port is written to only and the feedback is assigned to a
signal, the register feedback is generated. A port that is both read and
written must be of mode inout, and a port that is written to only may
be either out or inout.

For example, consider two implementations of a 3-bit counter. The first
counter uses the register feedback path, and the second uses the pin
feedback path.

In the first case, the counter is specified by a variable named count1,
and the output of the counter drives the pin count. This describes
register feedback, since the value is fed back with the variable
count1.

entity counter0 is
    port (clock: in Boolean;
         count: out integer range 0 to 7);
end counter0;

architecture register_feedback of counter0 is
begin
    process (clock)
        variable count1: integer range 0 to 7;
    begin
        if clock and clock'event then
            if count1 = 7 then
                count1 := 0;
            else
                count1 := count1 + 1;
            end if;
        end if;
        count <= count1;
    end process;
end register_feedback;

In the second case, the counter is described directly with the port
count. Note that count is now an inout so that it may be read from
and written to. The counter feedback uses the VHDL port directly, and
will therefore result in the pin feedback path being generated.
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entity counter1 is
    port (clock: in Boolean;
         count: inout integer range 0 to 7;
end counter1;

architecture pin_feedback of counter1 is
begin
    process (clock)
    begin
        if clock and clock'event then
            if count = 7 then
                count <= 0;
            else
                count <= count + 1;
            end if;
        end if;
    end process;
end pin_feedback;

Note:  Mode inout  should only be used to describe true directional
ports—those that have an output enable function associated with
them. Using inout to describe signals that are simply fed back to
create circuits such as counters is not recommended.
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Selecting a Base Data Type
An important consideration when starting a VHDL design project is the
data type upon which your design is to be based. Typically, you will
use one of the following types:

• Integer

• Bit and bit_vector

• Std_ulogic and std_ulogic_vector

• Std_logic and std_logic_vector

• Std_logic and the unsigned/signed data types defined by IEEE
1076.3

The default type for wires and pins in Synario's schematic editor is std_logic (or
std_logic_vector for busses). If you wish to use a different type on schematics,
you must either change the net_type and bus_type settings in the
\synario\config\vhdl.ini file, or change the type of individual wires and buses by
setting the VHDL_NetType VHDL_BusType attribute on the schematic. Refer to
the Netlist Application Note available through online help for details.

The advantages and disadvantages of designing using different base types is
discussed below.

Using the Integer Type

Using an integer type has the advantage that all the normal
arithmetic operators are built into the VHDL language for this type.
Another advantage of using integers is that they use memory
efficiently during simulation. To understand why this is so, consider
the following declarations:

signal a_int : integer range 0 to 255;
signal a_vec : bit_vector(7 downto 0);

Both a_int and a_vec are capable of representing exactly the same
range of values. Note that the declaration of a_int defines one signal,
while the declaration of a_vec really defines eight signals (one per bit
of the vector). To support attributes, there is a variety of information
that a VHDL simulator must store for each signal (such as the last
value, whether the signal is active or not, and so on), so using an
integer is more efficient.

There are several disadvantages to using integers, however. The first
is that there is no way for an integer to represent several common
logic states such as unknown, tristate, or don’t-care. The second
problem is that when writing VHDL code that performs integer
operations, you must include extra code to check for boundary
conditions. Consider the following code fragment:

signal a, b, z : integer range 0 to 7;

z <= a + b;
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The problem with this code is that whenever the sum of a and b
exceeds 7, a fatal error will occur during simulation. To avoid this, the
code must be re-written to handle this boundary condition:

process(a, b)
    variable a_var, b_var : integer range 0 to 15;
begin
    a_var := a;

    b_var := b;
    if (a_var  +  b_var > 7) then
        z <= a_var + b_var - 8;
    else
        z <= a_var + b_var;
    end if;
end process;

This model correctly handles overflow conditions, but at great expense
in complexity of the code. More importantly, the synthesizer has no
way of knowing that this code is only present to handle simulation
issues, and will synthesize more logic than is really needed to
implement a 3-bit, unsigned adder.

Using Bit and Bit_vector Types

Types bit and bit_vector have the advantage of being built into the
VHDL language, and are therefore highly portable. These types also
have many disadvantages, however. The first is that built-in arithmetic
operators are not defined for bit_vector. You can overcome this
limitation by using the package bit_ops contained in the file
\synario\lib5\dataio.vhd supplied with your Synario installation. A
second and more serious limitation is the fact that bit may represent
only two states, ’0’ and ’1’. Therefore, it is impossible to model tristate
or wired logic properly using the bit type.

Using Std_ulogic and Std_ulogic_vector Types

Types std_ulogic and std_ulogic_vector are attractive since they allow
modeling of  unknown, tristate, and other such logic states. As
unresolved types, though, they may not be used to model wired logic
or tristate buses. Also, there are no overloaded arithmetic operators
defined for std_ulogic_vector.

Using Std_logic and Std_logic_vector Types

Types std_logic and std_logic_vector offer numerous advantages. As
resolved types, they not only have the necessary logic states to model
tristate and wired logic, but they also allow for multiple drivers on the
same signal. Overloaded arithmetic operators are provided for
std_logic_vector in the package std_logic_ops found in the file
dataio.vhd.  Overloaded textio functions are available as part of the
package std_logic_textio found in the file \synario\lib5\stdtxtio.vhd.
In addition, all new IEEE packages and libraries (such as VITAL or
1076.3) are based on std_logic. A final advantage of std_logic and
std_logic_vector is that it is the assumed type for wires and buses
drawn on a Synario schematic.
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Using IEEE 1076.3 Unsigned/Signed Types

In late 1995  the IEEE 1076.3 commitee approved a new VHDL package called
numeric_std. This package defines two vector types, unsigned and signed, and
the appropriate overloaded operators for these types. Both unsigned and signed
are based upon the std_logic type. This has several implications:

• You can not assign a signal of type std_logic_vector to one of type unsigned
(or signed) or visa-versa. For example:

signal slv : std_logic_vector(3 downto 0);
signal uns : unsigned(3 downto 0);
.
.
slv <= uns;

will not compile.

• Since the post-route netlists produced for VHDL simulation are usually
defined in terms of std_logic and std_logic_vector, is is impossible to "plug in"
a post-route netlist into a testbench in place of a functional design that had
ports of type unsigned or signed.

For these reasons, it is recommended that types unsigned/signed only be used in
places where the overloaded functions defined in the numeric_std package are
needed. Explicit type conversions can be performed at the point of use, for
example:

signal a,b,z : std_logic_vector(3 downto 0);
.

.

z <= std_logic_vector(unsigned(a) + unsigned(b));

In this code fragment, the vectors a and b are converted to unsigned, summed
using the overloaded '+' operator defined by numeric_std, and the result is then
converted back to a std_logic_vector type before being assigned to z. If you
prefer to use unsigned/signed throughout your design, it is suggested that you still
make your top-level inputs and outputs type std_logic_vector, and convert them in
your top level module before using them throughout the rest of your design.
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Synthesis of Don't Cares
If you are designing using the type std_logic as your base type (as recommended
in the previous section) you are probably aware that one of the values in the
enumeration of std_logic is '-', which is commented in the std_logic_1164
package as meaning "don't care". Unfortunatly, none of the functions defined by
1164 actually give '-' such a meaning. For example, the following expression:

if ('1' = '-') then
...
end if;

will always evaluate to false during simulation.

Prior versions of Synario's VHDL synthesis compiler evaluated the '-' the same as
'0' in relational expressions.The IEEE 1076.3 standard has defined new
semantics for the '-' value that Synario now conforms to. In particular, any use of
the '-' value in an expression involving one of the relational operators (=, /=, >,
etc.) is defined to always return false. To get the simulation and synthesis
semantics of "don't cares" it is necesary to use the std_match functions defined in
the new numeric_std package. For example:

signal a,b,z : unsigned(3 downto 0);
.

.

z <= a when (std_match(b, "000-")) else "0000";

which makes the assignment to z conditional on only the left-most 3 bits of b.

Using Device Fitting Attributes
The VHDL synthesizer supports a small number of custom attributes
that can be used to control features of synthesis that are not normally
accessible from the VHDL language. These synthesis features include
control over pin placement, encoding of enumerated types and other
important optimization and device-related capabilities. All of the
custom attributes are defined in the file metamor.vhd, which can be
included in your VHDL source file with the following library and use
statements:

library metamor;
use metamor.attributes.all;

Alternatively, the required attribute declarations can be entered
directly into your VHDL source file. The declaration syntax for each
attribute is shown in the following subsections.
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Pinnum Attribute

You can specify pin and node numbers in the VHDL source file using
the custom attribute pinnum. special attribute is recognized by the
VHDL synthesizer and is written to the output for use by device fitting
software. This attribute has no other meaning to the VHDL synthesizer,
or to any other VHDL software (such as a simulator). The information
is simply passed on to the device fitting software.

To use the pinnum attribute:

1. Declare the pinnum attribute in the top-level entity as follows:
attribute pinnum : string;

2. Specify the value of pinnum attributes as strings, as in the
following example:
entity my_design is
     port(a, b : in integer range 0 to 7;
          c: bit_vector (3 to 5);
          d: bit_vector (27 downto 25);
          e: out Boolean);

    attribute pinnum: string;
    attribute pinnum of c: signal is "1,2,3";
    attribute pinnum of d: signal is "6,5,4";
    attribute pinnum of e: signal is "2";

end my_design;

To specify pin numbers for an array of signals:

You must consider the direction of the array. In the following example,
the pin numbers being assigned to each element of the arrays A and B
correspond to the index numbers for each array element:
    entity toplevel is
         port (Clock, reset: in std_logic;
               A out std_logic_vector(1 to 3);
               B out std_logic_vector(6 downto 4);
        attribute pinnum: string;
        attribute pinnum of Clock: signal is "1";
        attribute pinnum of reset: signal is "19";
        attribute pinnum of A: signal is "1,2,3";
        attribute pinnum of B: signal is "6,5,4";
    end toplevel;

If the pinnum attribute is applied to signals that are ports of the top-
level entity in the design (as in the above example), the values
specified in the attribute will be passed to the fitting software as pin
numbers. If the pinnum attribute is applied to signals that are internal
to an architecture, or are ports of a lower-level entity in the design,
the values will be ignored.

Note:  Pin numbers that are entered using the pinnum attribute may
be overridden by device fitting software, if the software is unable to
map the design as specified. Most device fitting software includes
Project Navigator properties that can be used to control how pin
number mapping is performed. Refer to the device kit documentation
for more information.
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To specify node numbers:

1. Declare the signal in the entity (not the architecture).

2. If the signal is combinational, associate a critical attribute with it,
as in the following example:
library metamor;
use metamor.attributes.all;
entity nnum1a is

port ( A, B, Clk: in boolean ;

o1: out boolean);

attribute pinnum of A  :  signal is "1";
attribute pinnum of B  :  signal is "2";
attribute pinnum of Clk  :  signal is "3";
attribute pinnum of o1  :  signal is "4";
-- maps to NODE #20 for combinational signal
signal t1: boolean;
attribute pinnum of t1  :  signal is "20";
attribute critical of t1  :  signal is true;
-- maps to NODE #21 for registered signal
signal t2: boolean;
attribute pinnum of t2  :  signal is "21";

end;

Property Attribute

The property attribute is used to pass device-specific fitting data to
device fitting or place-and-route software. The attribute strings are
passed to the fitter software (through the use of Open-ABEL property
fields in the intermediate data files) exactly as specified in the
property attribute statements. The case is maintained, and the syntax
of the strings is not checked or parsed in any way by the VHDL
synthesizer.

To use the property attribute, you must first declare the attribute as a
string using the following statement:

    attribute property: string;

and then write one attribute statement containing all properties
needed for the entire design:

    entity example is
        port (Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0: in bit;
              D3,D2,D1,D0: out bit);
        attribute property: string;
        attribute property of example: entity is
            "AMDMACH GROUP A Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0" & CR &

            "AMDMACH GROUP B D3 D2 D1 D0";
    end example;

In VHDL, it is not legal to have a newline imbedded within a string, so
to create multiple properties it is necessary to concatenate strings with
new lines using the “& CR &” syntax as shown.
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If you will be assigning properties to signals that are part of non-
binary data types (such as bit_vector, integer or std_logic_vector),
then you will need to be aware of how the VHDL synthesizer generates
signal names from these data types. When the VHDL synthesizer
expands an array data type into signals for each bit, it appends a
numeric suffix to the array name in the format _n_, where n is the
array index for each element of the data type. The following example
shows how to write a property for std_logic_vector data types.

library ieee;
use ieee.std_logic_1164.all;
entity example is
  port (Q: in std_logic_vector (7 downto 0);
        D: out std_logic_vector (3 downto 0));
    attribute property: string;
    attribute property of example: entity is
    "AMDMACH GROUP A Q_7_ Q_6_ Q_5_ Q_4_ Q_3_ Q_2_ Q_1_ Q_0_"

    & CR &

    "AMDMACH GROUP B D_3_ D_2_ D_1_ D_0_";
end example;

The actual property string that you must enter in the attribute
statements are defined in the appropriate device-specific
documentation provided with the device kit being used.

Macrocell Attribute

The macrocell attribute allows components in a design to be flagged
as external, device-specific macrocells in a hierarchical design.
Components that are specified with the macrocell attribute do not
have VHDL source files associated with them (unless VHDL source files
have been written or provided for simulation purposes), and are
resolved by the device fitting software during device mapping.

When the macrocell attribute is specified for a component, the
resulting output will include a hierarchical reference to the specified
external module, and the Project Navigator will not attempt to find a
source module in the design to resolve the hierarchy.

The following example demonstrates how the macrocell attribute can
be used:

library ieee;
use ieee.std_logic_1164.all;

entity top is
    port (a: in std_logic;
          b: in std_logic;
          out1: out std_logic;
          out2: out std_logic );
end top;
architecture schematic of top is
    component submod_def
      port (in1: in std_logic;
            in2: in std_logic;
            and1: out std_logic;
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            or2: out std_logic);
    end component;
    attribute macrocell: boolean;
    attribute macrocell of submod_def: component is true;

begin
    myblock: submod_def
        port map(in1=>a, in2=>b, and1=>out1, or2=>out2);

end schematic;

In this example, the hierarchical reference to the submod_def design
unit will result in a reference being generated for an external module
named submod_def. The VHDL synthesizer will not attempt to find or
synthesize the submod_def design unit.

To use the macrocell attribute when referencing hard and soft
macros, you must specify the actual name of the macro, as defined in
the appropriate device kit documentation, and provide component port
mapping that exactly matches the argument list of the hard or soft
macro. Refer to your device kit documentation for information about
available hard or soft macros.

Critical Attribute

The critical attribute allows you to flag signals used in your design as
nodes to be preserved in the final implementation. This is particularly
useful for debugging. To flag a signal as a node (and prevent its being
collapsed out of the design), you must first define the critical attribute
as a Boolean type:

attribute critical: boolean;

and then write an attribute statement for the desired signal (or
signals):

attribute critical of a,b,c: signal is true;

If you have some knowledge of the structure of your design, you may
be able to improve the timing characteristics of a large, combinational
function by using the critical attribute to flag certain signals in the
design. One example of this is a carry chain, in which a critical flag
applied to each carry signal can result in the individual logic blocks
operating faster than if the entire combinational circuit was optimized
for a minimum gate count.

Note: When you specify the critical attribute for a signal, the resulting
preserved node (or nodes) may have an unexpected name. For
example, if the signal is used at a lower level in a hierarchical design, it
is possible that the name will be prefixed with instance or block labels,
or will have a numeric suffix. If the signal is redundant, it may be
reduced out of the design entirely, even with the critical attribute.
Device fitting software may also modify or remove signals that have
been flagged as critical, depending on the device-specific
optimizations performed by the software.
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Enum_encoding Attribute

The enum_encoding attribute allows you to override the default
encoding of VHDL enumerated types. This is most useful when you
want to specify a non-sequential encoding for an enumerated type. For
example, you might want to use enum_encoding to specify the exact
encoding of each state in a state machine. The enum_encoding
attribute can also be used to encode don’t-care information into the
logic of an enumerated type output, or can be used to define
synthesizable 1-bit values for a multi-valued data type (such as the
IEEE 1164 type std_ulogic).

The syntax for the enum_encoding attribute is demonstrated in the
following example, which specifies an alternate encoding for a state
machine. To use the enum_encoding attribute, you must first define
it as a string type:

attribute enum_encoding: string;

and then write an attribute statement for the desired encoding values:

architecture behavior of state_machine is
    type state_values is (Init, S1, S2, S3, S4, S5);
    attribute enum_encoding: string;
    attribute enum_encoding of state_values: type is
        "000 001 011 111 110 100";

A special enum_encoding string, "one hot", can be used to specify
that an enumerated type represents a list of symbolic state machine
states, and is to be encoded using a one register per state (one hot)
encoding method. This method is particularly useful for state machines
that will be implemented in FPGA devices, and results in less
combinational logic being required for state decoding. The syntax for
the one hot encoding attribute is:

architecture behavior of state_machine is
    type state_values is (Init, S1, S2, S3, S4, S5);
    attribute enum_encoding: string;
    attribute enum_encoding of state_values: type is
        "one hot";

An example of one hot state encoding can be found in the tutorials
chapter in the VHDL Entry manual, in the complex state machine
example.
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5.  VHDL Datapath Synthesis

A common problem with using VHDL synthesis for FPGA and PLD
design is that synthesis tools often to a relatively poor job of
implementing datapath logic (wide adders, counters, multipliers, and
the like). There are a number of potential reasons for this:

• Datapath functions such as adders have many different potential
implementations, all representing different speed/density trade-
offs.

• Many FPGA and PLD vendors offer optimized libraries of datapath
functions, designed for efficient implementation in their specific
architecture.

• Synthesis tools to break all logic down to the level of Boolean
equations so that datapath functions are no longer recognizable as
such.

In order to avoid the efficiency issues that crop up when datapath
functions are decomposed into Boolean equations, Synario’s VHDL
synthesis compiler has the ability to infer the use of  certain common
datapath functions from your VHDL code and extract them from your
design. This inferencing capability is based on the LPM (Library of
Parameterized Modules) Specification, which is simply a industry-
standard set of variable-width macrofunctions such as adders,
counters, etc.  After these macrofunctions are extracted from your
design they are mapped to a specific implementation based upon the
chosen target device.

LPM inferencing from VHDL is currently supported for three Synario
Device Kits; Actel, Altera, and Actel. For Xilinx designers, a similiar
capability is available through the X-BLOX standard, consult the LCA
Device Kit manual for details.

There are two ways to take advantage of Synario’s datapath synthesis
and mapping capability in your VHDL designs:

♦ Allow Synario’s VHDL compiler to infer the use of LPM
macrofunctions  from “generic” VHDL code that  you write.

♦ Instantiate macrofunctions from Synario’s Generic Datapath
(gen_dp) library.
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How Inferencing Works

Inferencing is currently supported for the following macros:

♦ ADD_SUB

♦ MULT

♦ COUNTER

♦ COMPARE

Inferencing is performed based upon a combination of the operators
(+, -, >, etc.) that appear in your VHDL code and the context in which
those operators appear. For example,

signal a, b, c: std_logic_vector(7 downto 0);

c <= a + b;

would infer an ADD_SUB configured to perform addition.

Similarly, the code

signal clk : std_logic;

signal a : std_logic_vector(7 downto 0);

process(clk)

begin

   if (rising_edge(clk)) then

      a <= a + 1;

   end if;

end process;

would infer an 8 bit COUNTER.

In both of these examples, the overloaded operator '+' is used, but the
context is different.

Controlling Datapath Inferencing

The inferencing feature of Synario’s VHDL compiler is automatically
enabled if you are targeting a device where this feature is supported.
You may disable it by changing the properties for Synthesize Logic.

To disable inferencing :

1. In the Sources list in Project Navigator, click once to highlight a
VHDL source file.

2. In the Processes list, highlight the Synthesize Logic process.

3. Click the Properties button.

4. Set the LPM Inferencing property to False.

To enable inferencing for certain source files and not for others, use
Synario’s Strategy feature. This feature allows you to associate one or
more source files in your design with a particular synthesis and
optimization “style”. See “Strategies” in the Synario online help for
more information on using the Strategy feature.
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To View the Results of Inferencing:

1. Select the Synthesize Logic process, and click on the Properties
button.

2. Set the property Show Inferred Structure to True.

3. Run the Synthesize Logic process for the module.

4. Click the Log button. The Synario Report Viewer opens on the log
file.

See Figure 5-1 for an example of the inferencing portion of a log file.

Figure 5-1: Example of an Inferencing report in the Synario Log File

process :   accumulate                   4.00 sec

     Inferred structure :

       flip flop: ce       fdata_t 0        filter.vhd line 87

       flip flop: ce       fdata_t 1        filter.vhd line 87

       flip flop: ce       fdata_t 2        filter.vhd line 87

       flip flop: ce       fdata_t 3        filter.vhd line 87

       flip flop: ce       fdata_t 4        filter.vhd line 87

       flip flop: ce       fdata_t 5        filter.vhd line 87

       flip flop: ce       fdata_t 6        filter.vhd line 87

       flip flop: ce       fdata_t 7        filter.vhd line 87

       macrocell:          LPM_ADD_SUB

Limitations of Inferencing Support

There are some limitations to Synario's support for inferred datapath
macrofunctions:

1. ADD_SUB and COMPARE macros will not be inferred when one or
more of the operands of a function are constants (e.g. a+1, b < 2,
etc.).

2. Only UNSIGNED arithmetic is supported.

3.  Not all datapath macrofunctions are equally well supported in all
target architectures. Some targets may not have the ability to
implement certain features. For example, the Lucent Orca
architecture does not support both asynchronous presets and sets
on flip-flops. Therefore, a COUNTER macrofunction that uses these
ports can not be mapped to an Orca implementation. This will
result in Synario generating an error such as the one shown below
when it attempts to map the COUNTER for an ORCA device:

Unable to Map Parameterized Module of Type: LPM_COUNTER, Instance

Name: p63_0 to Vendor macro.

Reason for failure was:

LPM module type LPM_COUNTER can not be mapped if the port ACLR

is connected.

Fatal Error 19254: Mapping problem forces termination. Try

resynthesizing the source without LPM inferencing

Done: failed with exit code: 0002.
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If this happens because of an inferred macrofunction, turn LPM
inferencing off. If it happens because of an instantiated macrofunction,
either replace that macrofunction, or consider using it in a different
manner. For example, in this case using a synchronous reset will map
to an Orca device.

In all cases be sure to consult the Device Kit manual for your target
device, it will contain details on any limitations that apply to that
device.

Examples of How to Infer Datapath Macrofunctions

This section will discuss the particulars of how to write code to infer
the use of different datapath macrofunctions.

ADD_SUB

The following are examples of code that will infer an ADD_SUB:

c <= a + b;

p0: process (d, e)

begin

   f <= d+e;

end process;

p1: process(clk)

begin

   if (rising_edge(clk)) then

      i <= g - h;

   end if;

end process;

The first two cases, a simple signal assignment statement and a
combinational process, are equivalent. Process p1 will infer an
ADD_SUB, configured to do subtraction and with the output registered.

There is currently no way to infer use of the Add_Sub or Cin ports of
an ADD_SUB. Therefore,  the following examples will each infer two
ADD_SUBs:

l <= j + k + my_carry_bit;

p2: process(my_control,  m, n)

begin

   if (my_control = '1') then

      o <= m + n;

   else

      o <= m - n;

   end if;

end process;

For these cases, direct instantiation of  the G_ADD_SUB macrofunction
from the Synario Generic Datapath library is the solution, see the
section on instantiation.
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COUNTER

Inference of the COUNTER macro works very similarly to that for the
ADD_SUB. Examples of code that will infer counters are:

signal a : std_logic_vector(3 downto 0) := (others => '0');

p0: process(clk)

begin

if (rising_edge(clk)) then

a <= a + '1';

end if;

end process;

signal c : std_logic_vector(7 downto 0) := (others => '1');

p1: process(clk, my_async_ctrl)

begin

if (my_async_ctrl = '0') then

c <= (others => '1');

elsif (rising_edge(clk)) then

if (my_state =  load_state) then

c <= b;

else

c <= c + 1;

end if;

end if;

end process;

Process p0 infers a simple COUNTER with only the Clock and Q ports
connected. The initial state of signal a during simulation would be
"UUUU", and this code would fail to count properly except that we have
used an initial assignment on the declaration of signal a. If you use a
default assignment like this to get proper simulation behavior, be sure
that your choice of a default value matches the register power-up state
in your target device, otherwise mismatches will occur between the
functional and timing simulations and your device will not work as
intended.

Process p1 infers a COUNTER configured as an up counter with a low-
active asynchronous preset and synchronous load. Note that here we
are assuming that our registers will power-up to the logic 1 state.
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COMPARE

The COMPARE macrofunction will be inferred from the use of any of the
following relational operators: <, <, >=, <=, =, /=.  A COMPARE will
only be inferred when both of the operands are not constant values.
The following code will infer three COMPAREs:

p0: process (a, b, my_state)

begin

c <= '0';

case (my_state) is

when "00" =>

if (a = b) then

c <= '1';

end if;

when "01" =>

if (a /= b) then

c <= '1';

end if;

when others =>

if (a > b) then

c <= '1';

end if;

end case;

end process;

Note that the VHDL synthesis compiler will only infer COMPARE
macrofunctions with a single output (this is the least common
denominator).  Some targets (such as Altera) support COMPARE
functions with multiple outputs. In these cases it may be more efficient
to instantiate a single G_COMPARE directly, rather than letting the
synthesis compiler infer multiple COMPAREs. See the section on
instantiation for more details.

MULT

The MULT macrofunction will be inferred from any use of the *
operator where both operands are not constant. For example:

z <= a * b;

process(clk)

begin

   if (rising_edge(clk)) then

      iq <= i * q;

   end if;

end process;

The only difference in these two examples is that in the second case
the outputs of the MULT will be registered.
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Inferencing Details

This section provides additional details on inferencing.

Supported Types

Inferencing is supported for operands of type bit_vector,
std_logic_vector, IEEE unsigned, and integer.  If you are synthesizing
designs originally developed in the Synopsys environment, the type
unsigned in the package stdarith.std_logic_arith may also be used.

In general, integer is a poor choice. The reason for this can be seen by
examining the following code fragment, which will infer an ADD_SUB:

signal a, b, c: integer range 0 to 255;

c <= a + b;

For situations where the sum of a+b is greater than 255, a fatal
assertion will occur during simulation. This is different than the
behavior of  an actual ADD_SUB macro, which will rollover when the
sum is greater than 255.

The behavior of code written using the overloaded arithmetic operators
supplied in either the dataio.std_logic_ops package (for
std_logic_vector) or in the IEEE package numeric_std (for types
unsigned and signed) will mimic the behavior of the LPM
macrofunctions that are inferred, and therefore we recommend the use
of these types.

Matching Semantics

In order for datapath macrofunctions to be inferred, the simulation
semantics of VHDL code must match the semantics of the
corresponding macrofunction. For example:

process(clk)

begin

   if (rising_edge(clk)) then

if (load = '1') then

a <= b;

elsif (clk_en = '1') then

      a <= a + 1;

end if;

   end if;

end process;

would not infer COUNTER.   The reason for this is that the clock enable
input to an LPM COUNTER must override the load input, and this is not
the case for the code fragment shown.
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Resource Sharing

Consider the following simple ALU:

p0: process(operand0, operand1, operand2, opcode)

begin

case(opcode)

when  ADD_OPERAND1 =>

result <= operand0 + operand1;

when SUB_OPERAND1 =>

result <= operand0 - operand1;

when ADD_OPERAND2 =>

result <= operand0 + operand2;

when others =>

result <= operand0 - operand2;

end case;

end process;

Because resource sharing is not currently supported, this code will
infer 4 different ADD_SUB macros. A better approach would be to
instantiate a single ADD_SUB, and generate the inputs to it from a
process:

p0: process(opcode)

begin

case(opcode)

when ADD_OPERAND1 =>

add_sub <=  '1';

b <= operand1;

when SUB_OPERAND1 =>

add_sub <=  '0';

b <= operand1;

when ADD_OPERAND2 =>

add_sub <=  '1';

b <= operand2;

when others =>

add_sub <=  '0';

b <= operand2;

end case;

end process;

p1: add_sub

generic map (width => 8, representation => "UNSIGNED")

port map(dataa => operand0, datab => b, add_sub => add_sub, sum =>

result);

Essentially,  you should separate datapath from control logic,
instantiating the datapath and leaving the control logic for synthesis.
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Instantiation Details

If you are planning to do direct instantiation of the Synario Generic
Datapth  macrofunctions, you will need to add the following library/use
statements to your source code:

library gen_dp;

use gen_dp.components.all;

The source code for this package can be found in
<SYNARIO>\lib5\gen_dp.vhd, where <SYNARIO> refers to your
Synario installation directory. This package contains the component
declarations for all supported  macrofunctions, and should be consulted
when doing direct instantiation.

Functional Description

The following tables describe the functional behavior of the datapath
macrofunctions.

G_ADD_SUB

The following table describes the ports of the G_ADD_SUB:

Port Usage Default
Value

Description Comments

Dataa Required None First data input Size equals WIDTH generic.

Datab Required None Second data input Size equals WIDTH generic.

Add_sub Optional Logic 1 Controls whether add or sub
function is performed.

Defaults to add.

Cin Optional Logic 0 Carry in, active high.

Sum Optional None Sum output. Sum = Dataa +/- Datab +/- Cin

Cout Optional None Carry out output. Indicates overflow for unsigned
arithmetic.

Overflow Optional None Overflow output Has no meaning for UNSIGNED
arithmetic.

G_ADD_SUB also has the following generics:

Generic Usage Description Comments

Width Required The width, in bits, of the Dataa,
Datab, and Sum ports.

Must be an integer value >= 2.

Representation Required Indicates whether UNSIGNED or
SIGNED math is to be
performed.

Only the value UNSIGNED is
currently supported.

An example of an instantiated G_ADD_SUB is:
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i_addsub0: g_add_sub

  generic map (width => 8, representation => "UNSIGNED")

  port map(dataa=>din0, datab=>din1, sum=>add_sub_out);

Note that the REPRESENTATION generic must be assigned a valid
value, even though it is defined to have default value in the
component declaration. This is true for all datapath macrofunctions.

G_COMPARE

The following table describes the ports of the G_COMPARE:

Port Usage Default
Value

Description Comments

Dataa Required None First data input Size equals WIDTH generic.

Datab Required None Second data input Size equals WIDTH generic.

Alb Optional None High if Dataa < Datab Not(Alb) = Dataa >= Datab

Aeb Optional None High if Dataa = Datab Not(Aeb) = Dataa /= Datab

Agb Optional None High if Dataa > Datab Not(Agb) = Dataa <= Datab

G_COMPARE also has the following generics:

Generic Usage Description Comments

Width Required The width, in bits, of the Dataa,
Datab, and Sum ports.

Must be an integer value >= 2.

Representation Required Indicates whether UNSIGNED or
SIGNED math is to be
performed.

Only the value UNSIGNED is
currently supported.

An example of an instantiated G_COMPARE is:

i_compare0: g_compare

generic map (width => 8, representation => "UNSIGNED")

   port map(dataa=>din0, datab=>din1, alb=>a_lt_b, aeb=>a_eq_b, 

agb=>a_gt_b);

G_COUNTER

The following table describes the ports of the G_COUNTER:

Port Usage Default
Value

Description Comments

Data Optional None Data input Size equals WIDTH generic.

Clock Required None Clock input Rising edge sensitive clock
input.

Enable Optional Logic 1 Active high clock enable Defaults to enabled.

Updown Optional Logic 1 Up/down counter control Counter counts up when high,
counts down when low. Defaults
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to up counter.

Aset Optional Logic 0 Asynchronous set input Sets all Q outputs high

Aclr Optional Logic 0 Asynchronous clear input Sets all Q outputs low

Aconst Optional Logic 0 Asynchronous set/clear input Sets the Q output to the value
of the AVALUE generic. If used,
neither the Aset or Aclr inputs
can be used.

Aload Optional Logic 0 Asynchronous load input Sets the Q output to the value
of the Data input.

Sset Optional Logic 0 Synchronous set input Sets all Q outputs high on the
next rising edge of Clock with
Enable high.

Sclr Optional Logic 0 Synchronous clear input Sets all Q outputs high on the
next rising edge of Clock with
Enable high.

Sconst Optional Logic 0 Synchronous set/clear input Sets the Q output to the value
of the SVALUE generic on the
next rising edge of Clock with
Enable high. If used, neither the
Sset or Sclr inputs can be used.

Sload Optional Logic 0 Synchronous load input Sets the Q output to the value
of the Data input on the next
rising edge of Clock with Enable
high. If used, the Data input
must be used.

Testenab Optional Logic 0 Active high test enable. When this input is high,
COUNTER enters a test mode
and will serially shift data
through from the Testin input to
the Testout output.

Testin Optional Logic 0 Serial test data input The value on this input is shifted
into Q(0) on the rising edge of
Clock with Testenab active.

Testout Optional None Serial test data output This output is always equal to
Q(WIDTH-1).

Q Optional None Registered Counter output Size equals WIDTH generic.

Eq Optional None Asynchronous decode of the Q
output.

Size equals 2**WIDTH generic.

Notes:

1.  Most targets do not support the Testenab, Testin, Testout, Aconst,
Aload, and Sconst ports.

2.  The Eq port, if used, will be 2**WIDTH bits wide. The compile time
will grow exponentially with the width of this port; therefore we
recommend that if you use this port that you do not set WIDTH >
6. If necessary, you can cascade individual G_COUNTERs together
to create wider counter functions.
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G_COUNTER also has the following generics:

Generic Usage Description Comments

Width Required The width, in bits, of the Dataa,
Datab, and Sum ports.

Must be an integer value >= 2.

Representation Required Indicates whether UNSIGNED or
SIGNED math is to be
performed.

Only the value UNSIGNED is
currently supported.

Modulus Optional The terminal count of the
counter.

If not set, terminal count will
default to 2**WIDTH - 1.

Avalue Optional Value loaded by the Aconst
input.

See Note 2., above.

Svalue Optional Value loaded by the Sconst
input.

See Note 2., above.

Pvalue Optional Power-up value of the Q output. For simulation, defaults to 0.

Notes:

1.  Most targets do not support Modulus, Avalue, and Svalue.

2.  At the current time no targets support Pvalue.  With the default
value for this generic, the Q output of the functional simulation
model will initialize to 0. This may or may not match the behavior
of the target implementation.

An example of an instantiated G_COUNTER is:

i_count0: g_counter

generic map (width=>16, REPRESENTATION => "UNSIGNED")

   port map (data=>din0, clock=>clock, aclr=>areset, sload=>sload,

q=>count_out);
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G_MULT

The following table describes the ports of the G_MULT:

Port Usage Default
Value

Description Comments

Dataa Required None First data input Size equals WIDTHA generic.

Datab Required None Second data input Size equals WIDTHB generic.

Sum Optional Logic 0 Partial Sum. Size equals WIDTHS generic.

Product Optional None Product output. Product = Dataa * Datab +
Sum. Size equals WIDTHP
generic.

Notes:

1. Most targets do not support the Sum port.

G_MULT also has the following generics:

Generic Usage Description Comments

Widtha Required The width, in bits, of the Dataa
port.

Must be an integer value >= 2.

Widthb Required The width, in bits, of the Datab
port.

Must be an integer value >= 2.

Widths Required The width, in bits, of the Sum
port.

Must be an integer value >= 2.

Widthp Required The width, in bits, of the Product
port.

Must be an integer value >= 2.

Representation Required Indicates whether UNSIGNED or
SIGNED math is to be
performed.

Only the value UNSIGNED is
currently supported.

An example of an instantiated G_MULT is:

i_mult0: g_mult

generic map(widtha=>4, widthb=>4, widthp=>8,

   representation => "unsigned")

port map(dataa=>din0, datab=>din1, product=>mult_out);

G_RAM_DQ

At the current time G_RAM_DQ is never inferred. It may be
instantiated, but is only supported for Altera targets, where it maps
directly to the Altera LPM_RAM_DQ macro. See the Altera MaxPlus
documentation for details.
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G_ROM

At the current time G_ROM is never inferred. It may be instantiated,
but is only supported for Altera targets, where it maps directly to the
Altera LPM_ROM macro. See the Altera MaxPlus documentation for
details.

Functional Simulation

Functional simulation models for the Synario generic datapath
macrofunctions are supplied in the file
<SYNARIO>\generic\vhdl\gen_dpe.vhd. This file will automatically be
compile into the appropriate library in the Vsystem simulator if you
following the instructions outlined in the SYN-VHDL ReadMe.

Note that at the current time, the following limitations apply with
respect to these models:

1.  Models for the G_RAM_DQ and G_ROM do not support loading their
initial contents from a data file. To load these memories with initial
values during simulation, use the FORCE command in Vsystem.

2.  All models only support a value of UNSIGNED for the
REPRESENTATION generic.
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6.  How to Manage VHDL
Design Hierarchies

Managing Large Designs
This section shows you how to use partitioning and design
management to manage larger designs. The VHDL constructs for
partitioning and sharing code modules are the component,
configuration, block and library statements. You should refer to a
standard VHDL reference text for detailed descriptions of these
partitioning statements. In this section, methods for design
partitioning that are most relevant to synthesis will be discussed.
Additional methods of design partitioning, using packages, will be
discussed in the section that follows.

Hierarchy

Hierarchy is a way of managing a design by creating references to
external, lower-level design modules (entities) from within a higher-
level design module. The concept of hierarchy in VHDL is similar to the
concept of hierarchy as implemented in many schematic entry
systems. The basic unit of hierarchy in VHDL is the component. A
component is a VHDL entity that is referenced as a lower-level module
from another, higher-level entity.

A VHDL entity can have multiple architectures, and a particular
entity/architecture pair (referred to as a design entity) can be
referenced from another architecture as a VHDL component.
Instantiating components within another design provides a mechanism
for partitioned designs, or for using existing designs as reusable
components of larger designs.

You can manage the relationship between a component declaration
and various design entities by using configuration specifications.
Configuration statements are supported in the VHDL synthesizer, and
are described later in this chapter. There are default configurations, so
it usually not necessary to include configuration specifications in your
designs.
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Components

VHDL design entities can be referenced from other architectures as
components. VHDL allows you to manage the mapping of design
entities to components with a configuration specification (described in
the next section) that associates particular component instances with a
specified design entity. In most cases, however, you will have only one
design entity for each component instance, and you will simply let the
VHDL synthesizer (or simulator) select the default entity (default
binding) for each component.

The following example contains three entity/architecture pairs: two
lower level entities (add and mult) and a top level entity (addmult)
that includes two component instantiations of the lower-level entities:

-----------------------------
-- lower-level entity: adder
--
entity add is
    port(op1,op2: in integer range 0 to 7;
        result: out integer range 0 to 63);
end add;
architecture dataflow of add is
begin
    result <= op1 + op2;   -- add the operands
end dataflow;
----------------------------------
-- lower-level entity: multiplier
--
entity mult is
    port(op1,op2: in integer range 0 to 7;
        result: out integer range 0 to 63);
end mult;
architecture dataflow of mult is
begin
    result <= op1 * op2;   -- multiply the operands
end dataflow;

------------------------------------------------------
-- top-level entity: mux of add and multiply results
--
entity addmult is
    port(op1,op2: in integer range 0 to 7; sel: in boolean;
         result: out integer range 0 to 63);
end addmult;
architecture structure of addmult is
    signal s_add, s_mult: integer range 0 to 63;
    component add   -- component declaration
        port(op1,op2: in integer range 0 to 7;
            result: out integer range 0 to 63);
    end component;
    component mult  -- component declaration
        port(op1,op2: in integer range 0 to 7;
            result: out integer range 0 to 63);
    end component;
begin
    add1: add port map (op1,op2,s_add);
    mult1: mult port map (op1,op2,s_mult);
    with sel select    -- Mux the add and multiply results
        result <= s_add when FALSE,
                 s_mult when TRUE;
end structure;
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In this example, the architecture of addmult contains a declaration of
two components, add and mult, and one instance of each component.
The three design entities are arranged in the hierarchy shown in
Figure 6-1.

Figure 6-1: Hierarchy of the Addmult Multiplexer

Hierarchical designs contain multiple design entities, and may be
written using more than one source file, or by entering multiple design
entities (entity/architecture pairs) in the same source file.

Components And Synthesis

Using components to partition a large design can have advantages for
synthesis. Many of the optimizations performed by the VHDL
synthesizer operator at the component level, meaning that a design
written using components can process more efficiently. Large designs
can create very long run times during synthesis, so breaking up the
design into smaller pieces using components is recommended. In
addition to performing logic optimizations at the level of components,
the VHDL synthesizer will detect multiple references to (instances of) a
component, and will not attempt to perform the same optimizations
twice for the same circuitry. The synthesizer will instead make a copy
of the already-optimized circuitry to create the additional instances.

Using Multiple Hierarchical VHDL Files

If you use multiple VHDL source files to describe the hierarchy of your
design, and have entered only a single entity/architecture pair in each
VHDL file, then the Project Navigator will determine the hierarchy of
your design for you, and will display the VHDL sources as a hierarchy
(by indenting them in the Sources Window). When the design is
synthesized, the Project Navigator runs the VHDL synthesizer once for
each source file. During synthesis, hierarchy references are be
generated for each VHDL file. After synthesis, the synthesized logic for
each module is combined (by linking or merging) during the device
fitting process.

Note:  The point at which a hierarchical design is linked or merged
depends on the type of device selected. Designs being implemented in
PLD-type devices are linked prior to the device fitting process, while
designs being implemented in FPGA devices are merged later, during
the fitting process. For FPGA devices, partitioning a large design into
multiple source files can greatly reduce the processing time required
for the design.
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When you simulate a design consisting of multiple VHDL files, you
must compile the design from the bottom up, beginning with the VHDL
files containing the lowest-level design entities (those that contain no
references to other VHDL design units). The VHDL simulator does not
allow VHDL source files to be compiled if they contain references to
lower-level design entities that have not yet been compiled.

Note:  The Project Navigator expects the entity and architecture
declarations for each design entity to be located in the same source
file.

Using A Single Hierarchical VHDL File

If you choose to enter your design as a single VHDL source file,
however, the VHDL synthesizer will attempt to flatten the entire design
into a non-hierarchical form. When doing this, the VHDL synthesizer
will assume that the last entity (or configuration declaration)
encountered in the VHDL source file is the top-level design entity. If
the top-level design entity is not the last entity or architecture in the
file, then you must specify the name of the actual top-level design
entity by setting the Top-Level Entity property in the Project Manager.

Configurations

Configurations are one of five primary design units in VHDL (the others
being entities, architectures, package declarations and package
bodies). During synthesis or simulation, you may choose to have a
configuration statement represent the highest level design unit in your
design instead of the top-level entity. When you process a design with
a configuration statements as the highest level design unit, the
configuration statement provides the necessary information to define
the design, in terms of the relationships between all the other design
units and their references to lower-level design units (entities,
architectures, and component references to lower-level entities and
architectures).

For structural VHDL (designs with many components arranged in a
hierarchy) it is useful to think of the configuration statement as a parts
list. The configuration statement may contain statements associating
each component instance in the design with a specific architecture
(perhaps allowing a different architecture to be used for simulation
than is used for synthesis) or may specify generics (compile-time
values) that configure components prior to their use. (One common
use of generics in this way is to pass delay values into an architecture
prior to simulation.)

Note:  Generics are fully supported in the VHDL synthesizer, but are
not described in this manual. Refer to a standard VHDL text for
information about this language feature.
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Configurations can also be used to re-map the ports of a component
and its lower-level entity, making it possible to substitute lower-level
entities that do not directly correspond to the component instance
being described at the higher-level. In this context, you can think of
configurations as being analogous to a configurable socket connecting
an IC package (the component) to a possibly mismatched set of
through-holes on a printed circuit board (which in turn corresponds to
a component reference in the higher-level entity).

The VHDL synthesizer supports the use of configurations, and allows a
configuration to be specified as the top-level design unit for synthesis
purposes. For more complete information about configurations, refer to
a standard VHDL text.

Blocks

Designs can be partitioned using either block statements or
component statements. While component statements are used to
create a hierarchy of connected components, block statements are
used to provide partitioning within a single architecture. Using block
statements to partition an architecture is analogous to using multiple
drawing sheets to enter a schematic-based design.

Block statements can be used to partition concurrent statements, as
in the following example:

architecture partitioned of some_design is
begin
 <~><~><~>a_block: block
 <~><~><~>begin
 <~><~><~><~><~><~><~>-- concurrent statements here
 <~><~><~>end block;
 <~><~><~>another: block
 <~><~><~>begin
 <~><~><~><~><~><~><~>-- concurrent statements here
 <~><~><~>end block;
end partitioned;

Blocks such as this have no special meaning for synthesis, and are not
frequently used in designs intended for synthesis.

Using Packages
Package declarations can be used to declare common types and
subprograms. For example:

package example_package is
    type shared_enum is (first, second, third, last);
end example_package;

In order for the contents of a package to be visible from inside an
entity or an architecture, you need to place a use clause before the
entity declaration, as in the following example:

use work.example_package.all;
entity design_io is
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    ...
end design_io;

Placing a use clause before an entity causes the contents of the
specified package contents to be visible to that entity and its
architecture(s), but nowhere else. This means that you must include a
use statement before each entity/architecture pair in the design that
requires access to package contents.

Package Visibility Rules

Standard VHDL package visibility rules ignore file boundaries, meaning
that a package could be in one file, the use clause and entity
declaration in another, and the architecture in a third file. The VHDL
synthesizer and Project Navigator, however, require that each entity
appear in the same source file as its corresponding architecture, and
that library and use statements appear in the same file as the entity
and architecture in which they are used.

For example, if the following library statement is placed in the VHDL
source file:

library my_lib;

then the VHDL synthesizer will analyze the file named my_lib.vhd in
the current directory, then the VHDL synthesizer will search for and
analyze the contents of a file called my_lib.vhd, looking first in the
current working directory and then in the \synario\lib5 directory. (Note
that library names cannot exceed 8 characters, to comply with DOS
filename restrictions.)

To make the library units within the library visible outside that library,
it is necessary to add the following statement to the VHDL source file:

use my_lib.my_package.all;

This use clause must be place just prior to (and in the same source file
as) any entity statement that requires access to the contents of
my_package. (You do not have to repeat the use statement prior to
the architectures associated with the entities; architecture design units
inherit the visibility rules of their parent entities.)

Design Libraries

Each package declaration that you write, and all other design units,
including entities and architectures, are compiled (during simulation or
synthesis) into a special area called a design library. In simulation
environments, if you do not specify a named library during
compilation, then the default library, work, is where the package will
be compiled. For packages that you place in the same source file in
which they are referenced, you will use the name work for all use
clause references to those packages.

Note:  There are differences between the way in which the work
library is implemented in the VHDL synthesizer and many VHDL
simulation products. Refer to the information in the next section,
"Using Design Libraries," for a complete explanation.



How to Manage VHDL Design Hierarchies

VHDL Reference Manual 6-7

Using Packages For Common Declarations

To define common declarations (such as types, subtypes or
subprograms), you may want to use a package that is shared between
different VHDL sources files. Although this is quite easy to do in
simulation systems (you simply all of the source files, including the file
containing the package, into work and place appropriate use
statements before each design unit requiring the package), there are
some restrictions on how you can do this using the VHDL synthesizer.
If you need to reference a package from within two or more different
source files (for example, from your actual design description and from
a test bench, or from two or more source files referenced in the
hierarchy of the design), you must place the package declaration in a
separate VHDL source file and reference it as a named library. You do
this by referencing the external source file containing the package in
each of the source files using library statements. During synthesis,
the VHDL synthesizer will include the external source file containing
the package declaration into the files that contain the library
statements. During simulation, you must compile the external source
file containing the package into an appropriately named library before
compiling the higher-level source files. For example, if you have the
following package:

library ieee;
use ieee.std_logic_1164.all;

package typedef is
    subtype byte is std_logic_vector (7 downto 0);
end;

and you wish to reference the type byte in more than one source file
in your design, then you must place the package in a unique source
file, and place library statements prior to the entity declarations in all
source files that require the byte data type:

library mytypes;
use mytypes.typedef.all;

In this use statement, mytypes corresponds to the name of the
external VHDL source file containing the package (in this case,
mytypes.vhd). During synthesis, the VHDL synthesizer will include the
mytypes.vhd file each time it encounters the library statement. When
you simulate the design, you will compile the mytypes.vhd file into a
named library (mytypes) prior to compiling the other source files into
the work library.

For more information on these and other uses of packages and
libraries, refer to a standard VHDL text.
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Using Design Libraries
In most VHDL simulation environments, design libraries are areas in
which pre-compiled (analyzed) design units are stored. An good
example of such a library is the IEEE library, which is pre-compiled into
a library accessible to the VHDL simulator. The form that the pre-
compiled library takes is dependent upon the simulator being used,
and compiled libraries are generally not compatible between different
simulator programs.

The VHDL synthesizer, on the other hand, implements libraries as
source files that are read in and synthesized as they are encountered
in a higher-level VHDL source file (as library statements). This means
that a library such as the IEEE library must exist as a VHDL source file,
and must be accessible to the VHDL synthesizer during the compilation
process. The VHDL source code for the IEEE library, for example, is
provided in the file ieee.vhd.

Note:  The VHDL implicit library std does not have to be referenced in
a library or use statement. The library std is contained in the file
std.vhd.

Library Search Paths

When the VHDL synthesizer encounters a library statement, it
attempts to find a corresponding VHDL source file (one with a name
matching the referenced library name) in the current directory (the
project directory). If a VHDL source file with the appropriate name is
not found in the current directory on your system, the VHDL
synthesizer will attempt to find the referenced VHDL source file in the
library area (normally ./lib5/) within the Project Navigator installation
directory.

If you create library files that will be shared between multiple projects,
you may want to place those files in the library area, rather than make
local copies in each project directory.

The Work Library

The differences in library implementations between most simulation
environments and the VHDL synthesizer does not normally make any
difference; library files are read in by the synthesizer as needed, and
the library and use statements function normally. The only exception
is in the treatment of the default library, work.
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Work is the default name of the current library. The work library is
where, in a simulation system, all of your design units (entities,
architectures, packages, and configurations) will be placed after they
are analyzed, unless you have specified an alternate (named) library.
Unlike simulation environments, the VHDL synthesizer only considers
design units that are currently being compiled (those in the current
source file) to be in the work library. This means that the VHDL
synthesizer will not be able to access design units (such as packages)
that are located in another source file using the work library.

The Dataio and Generics Libraries

In addition to the ieee and std libraries, two custom libraries, dataio
and generics, are provided with the VHDL synthesizer. These libraries
(which are provided in source file form in the lib5 installation
subdirectory, and in simulation compiled form in the generic/vhdl
subdirectory) are used for type conversions and for simulation of
generic symbols, respectively. Examples of using these libraries can be
found in the tutorials chapter of the VHDL Entry manual.

Using Schematics With VHDL
The Project Navigator allows schematic and VHDL sources to be
intermixed in an arbitrary hierarchy. When such a design is entered,
there are certain rules that you must follow to ensure that the design
is able to be simulated (using the VHDL simulator) and properly
synthesized.

Note:  Although VHDL is case-insensitive, the VHDL synthesizer
preserves the case (upper- and lower-case characters) used in all
VHDL signal names. Because some device-specific fitting software is
sensitive to case (and will not, for example, recognize that two signals
named Reset and RESET are the same), you should be careful to use
consistent signal names in different parts of your design. This is
particularly true when combining schematics with VHDL; always check
to make sure that the signal names used on the schematic match
properly with the names used in VHDL portions of the design.

Using A Top-Level Schematic With VHDL

You can create designs that are a mixture of top-level schematic files
and lower-level VHDL files, but there are a few rules that you must
observe:

• Use std_logic or std_logic_vector data types as interfaces
between blocks on the schematic and lower-level VHDL design
entities. When installed, the schematic VHDL netlist writer is set up
(via .INI files settings) for this data type, and will make reference
to lower-level design units using std_logic and std_logic_vector
as appropriate. If necessary, use the type conversion functions
provided in the dataio library (/lib5/dataio.vhd) to convert non-
std_logic data types to std_logic within the VHDL design units.
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• The names that you use in your schematic for net or instance
names must be valid VHDL identifiers. Refer to the rules for VHDL
identifier names, and check the list of VHDL keywords provided in
Appendix A if you are unsure if a particular name is a valid VHDL
identifier. Avoid using underscore (’_’) characters at the beginning
or end of names, as this is not allowed in VHDL names.

• To allow simulation to work properly on post-route models, you
should avoid using arrays (busses) on the top-level schematic for
your design. Instead, you should provide single-bit I/O signals, and
refer to these signals in your test bench.

The Using Schematics with VHDL tutorial in the VHDL Entry manual
provides an example of using a top-level schematic with lower-level
VHDL source files.

Using Lower-Level Schematics With VHDL

In most cases, you can mix higher-level VHDL sources with lower-level
schematics representing portions of your design. (Check your device
kit documentation for restrictions.) When you are referencing a lower-
level schematic module from VHDL, you do not need to specify any
special attributes or flag the external component in any special way
within the VHDL source file. When the VHDL synthesizer encounters a
component instantiation within a VHDL file that has no corresponding
lower-level VHDL entity declaration, it will simply create a reference to
the missing module in the generated Open-ABEL 2 format intermediate
file. The Project Navigator will then attempt to resolve the hierarchy by
looking for an appropriately named source file (either schematic or
VHDL) in the current project. If the Project Navigator is unable to
resolve the hierarchy reference, it will display a warning icon with the
name of the missing module.

Note:  If you are referencing a lower-level component that is not
represented by a lower-level schematic or VHDL file, and is instead a
hard or soft macro defined by the device kit chosen, then you must use
the macrocell attribute (described in the next section of this chapter)
to specify that the synthesizer should make an external reference to
the module.

Using Generic Symbols With VHDL

When you use the VHDL simulator to simulate a design schematic that
includes generic symbols (such as the MUX symbol used in the prep2
tutorial design), you must provide the simulator with information
about the function of the generic symbols. To do this, you must
reference the generics library provided with the Project Navigator,
using the Library Mapping menu item in the simulator. The generics
library (which can be found in compiled form in the
generic\vhdl\generics installation subdirectory) contains functional
models for all of the generic symbols provided with the schematic
editor.
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The generics library is also provided in source file form in the
generic\vhdl subdirectory, but this file (generics.vhd) is not used
during processing for simulation or for synthesis. It is only provided for
your information.

An example of how to map the generics library during simulation can
be found in the tutorials chapter in the VHDL Entry manual, in the final
tutorial example (prep2).

How Schematics Are Processed For VHDL Simulation

When creating a VHDL functional simulation model from a schematic,
the Project Navigator reads the schematic file and generates a VHDL
source file corresponding to a netlist representing all wires,
components and block symbols on the schematic. To create a VHDL
source file, the Project Navigator’s netlist generator must assign valid
VHDL data types to all wires and busses used on the schematic, and
assign matching data types to the ports of all components and blocks
used on the schematic.

By default, the data types used are std_logic and std_logic_vector.
These data types are specified in a configuration file (vhdl.ini), and
can be modified if needed. It is strongly recommended, however, that
you standardize on the std_logic and std_logic_vector data types
for all schematic/VHDL interfaces.

Note:  The Project Navigator allows schematics containing references
to generic symbols (such as G_DEC or G_MUX21) to be functionally
simulated using the VHDL simulator. The generics library included
with the VHDL option contains VHDL descriptions (models) for each
generic symbol. If you are using device-specific symbols (such as the
Xilinx TBUF internal tri-state or OSC oscillator), refer to your device kit
documentation for information about which symbols are supported in
VHDL simulation, and for information on how to access these model
libraries during simulation.
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A.  VHDL Quick Reference

This appendix contains basic reference information for VHDL syntax.
For complete information, refer to the IEEE Standard 1076-1993 VHDL
Language Reference Manual or to a standard VHDL text.

Reserved Words
The following words are reserved in VHDL (regardless of case) and
cannot serve as user-defined identifiers:

abs
access
after
alias
all
and
architecture
array
assert
attribute

begin
block
body
buffer
bus

case
component
configuration
constant

disconnect
downto

else
elsif
end
entity
exit

file
for
function

generate
generic
guarded

if
impure
in
inertial
inout
is

label
library
linkage
literal
loop

map
mod

nand
new
next
nor
not
null

of
on
open
or
others
out

package
port
postponed
procedure
process
pure

range
record
register
reject
rem
report
return
rol
ror

select
severity
shared
signal
sla
sll
sra
srl
subtype

then
to
transport
type

unaffected
units
until
use

variable

wait
when
while
with

xnor
xor
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VHDL Syntax Basics
The following code fragments illustrate the syntax of VHDL statements:

Declarations
-- OBJECTS

constant alpha : character := 'a';
variable total : integer ;
variable sum : integer := 0;
signal data_bus : bit_vector (0 to 7);

-- TYPES

type opcodes is (load,store,execute,crash);
type small_int is range 0 to 100;
type big_bus is array ( 0 to 31 ) of bit;
type glob is record
     first : integer;

     second : big_bus;

     other_one : character;
end record;

-- SUBTYPES

subtype  shorter is integer range 0 to 7;
subtype  smaller_int is small_int range 0 to 7;

Names
-- Array element

big_bus(0)

-- Record element

record_name.element
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Sequential Statements
--IF STATEMENT
if increment and not decrement then
    count := count +1;
elsif not increment and decrement then
    count := count -1;
elsif increment and decrement then
    count := 0;
else
    count := count;
end if;

--CASE STATEMENT
case day is
when Saturday to Sunday =>
    work := false;

    work_out := false;
when Monday | Wednesday | Friday =>
    work := true;

    work_out := true;
when others =>
    work := true;

    work_out := false;
end case;

-- LOOP,NEXT,EXIT STATEMENTS
L1 : for i in 0 to 9 loop
    L2 : for j in opcodes loop
        for k in 4 downto 2 loop    -- loop label is optional
            if k = i next L2;       -- go to next L2 loop
        end loop;
        exit L1 when j = crash;     -- exit loop L1
    end loop;
end loop;

-- WAIT STATEMENT
wait until clk;

-- VARIABLE ASSIGNMENT STATEMENT
var1 := a or b or c;
-- SIGNAL ASSIGNMENT STATEMENT
sig1 <= a or b or c;
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Subprograms
-- FUNCTION DECLARATION

-- parameters are mode in

-- return statements must return a value
function is_zero (n : integer) return Boolean is
    -- type, variable,constant,subprogram declarations
begin
    -- sequential statements
    if n = 0 then
        return true;
    else
        return false;
    end if;
end;

-- PROCEDURE DECLARATION

-- parameters may have mode in , out or inout
procedure count (incr : Boolean; big : out bit;
                                       num : inout integer) is
    -- type, variable,constant,subprogram declarations
begin
    -- sequential statements
    if incr then
        num := num +1;
    end if;
    if num > 101 then
        big := '1';
    else
        big := '0';
    end if;
end;
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Concurrent Statements
-- BLOCK STATEMENT

label5 :    -- label is required
block
    -- type, signal,constant,subprogram declarations
begin
    -- concurrent statements
end block;

-- PROCESS STATEMENT , sequential first form

label3 :    -- label is optional
process
    -- type, variable,constant,subprogram declarations
begin
    wait until clock1;
    -- sequential statements
end process;

-- PROCESS STATEMENT , sequential second form
process ( en1, en2, clk) -- ALL signals used in
                         -- process

    -- type, variable,constant,subprogram declarations
begin
    if clk then
        -- sequential statements
        local <= en1 and en2;
        -- sequential statements
    end if;
end process;

-- PROCESS STATEMENT , combinational
process ( en1, en2, reset ) -- ALL signals used in
                            -- process

    -- type, variable,constant,subprogram declarations
begin
        -- sequential statements
        local <= en1 and en2 and not reset;
        -- sequential statements
end process;
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-- GENERATE STATEMENT

label4 : -- label required
for i in 0 to 9 generate
    -- concurrent statements
    if i /= 0 generate
       -- concurrent statements

            sig(i) <= sig(i-1);
    end generate;
end generate;

-- COMPONENT INSTANTIATION

-- label is required

-- positional association
U1 : decode port map (instr, rd, wr);
-- named association
U2 : decode port map (r=> rd, op => instr, w=> wr);

-- CONDITIONAL SIGNAL ASSIGNMENT

total <= x + y;
sum <= total + 1 when increment else total -1;

-- SELECTED SIGNAL ASSIGNMENT;
with reg_select select
    enable <= "0001" when "00",
              "0010" when "01",
              "0100" when "10",
              "1000" when "11";
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Library Units
-- PACKAGE DECLARATION
package globals is
    -- type,constant, signal ,subprogram declarations
end globals;

-- PACKAGE BODY DECLARATION
package body globals is
    -- subprogram definitions
end globals;

-- ENTITY DECLARATION
entity decoder is
    port (op : opcodes; r,w : out bit);
end decoder;

-- ARCHITECTURE DECLARATION
architecture first_cut of decoder is
    -- type, signal,constant,subprogram declarations
begin
    -- concurrent statements
end first_cut;

-- CONFIGURATION DECLARATION
configuration example of decoder is
    -- configuration
end example;

-- LIBRARY CLAUSE

-- makes library , but not its contents visible
library utils;

-- USE CLAUSE
use utils.all;
use utils.utils_pkg.all;
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Attributes

♦ ATTRIBUTES DEFINED FOR TYPES
T'base the base type of T
T'left left bound of T
T'right right bound of T
T'high high bound of T
T'low low bound of T
T'pos(N) position number of N in T
T'val(N) value in T of position N
T'succ(N) T'val(T'pos(N) +1)
T'pred(N) T'val(T'pos(n) -1)
T'leftof(N) T'pred(N) if T is ascending

T'succ(N) if T is descending
T'rightof(N) T'succ(N) if T is ascending

T'pred(N) if T id descending
T'image(N) string representing value of N
T'value(N) value of string N

-- ATTRIBUTES DEFINED FOR ARRAYS
A'left(N) left bound of Nth index of A
A'right(N) right bound of Nth index of A
A'high(N) high bound of Nth index of A
A'low(N) low bound of Nth index of A
A'range(N) range of Nth index of A
A'reverse_range(N) reverse range of Nth index of A
A'length(N) number of values in Nth index of A
A'ascending true if array range ascending

-- ATTRIBUTES DEFINED FOR SIGNALS
S'event true if an event has just occurred on S
S'stable true if an event has not just occurred on S
S'last_value the previous value of S, before last change

-- STRING ATTRIBUTES
E'simple_name string "E"
E'path_name hierarchy path string
E'instance_name hierarchy and binding string
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B.  Limitations

VHDL is a technology-independent language and has a very large
feature set. Because the VHDL software is specifically targeted toward
logic design, some VHDL constructs are not applicable to synthesis.

Constraints and Unsupported Constructs
This section lists the VHDL constructs that are not supported by the
VHDL synthesizer, or whose use is constrained.

Unsupported Constructs

The following constructs are not supported; using them results in a
constraint error.

• Access types

• File types

• Signal attributes (except 'event and 'stable)

• Textio package

• Impure Functions

• Shared Variables

Constrained Constructs

The following constructs are constrained in their usage. Constrained
constructs fall into two classes:

• Statements constrained in where they may be used.

• Constrained expressions. The use of a constrained construct will
result in a constraint message.

Constrained Statements

• A wait statement may be first statement in a process only.

• Signal attributes 'event and 'stable are valid only when they
specify a clock edge.

• Subprogram calls cannot be recursive.

• The formal part of a named association may not be a function call.
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• A process sensitivity list must contain all signals that the process is
sensitive to.

Constrained Expressions

Certain expressions metalogic expressions which simply means they
evaluate to a constant value, and are not dependent on a signal (they
do not change over time).

• Operands of ** must be metalogic expressions.

• Assignments to elements of an array must have an index that is a
metalogic expression.

• An assertion statement condition, severity, and message must
consist of metalogic expressions, if the message is to be reported.

• Type and subtype declarations must be metalogic expressions.

• Floating point and physical types are constrained to the same set of
values as the equivalent integer type.

• While loop and unconstrained loop execution completion must
depend only on metalogic expressions.

Ignored Constructs
The following constructs are ignored. They may be included in the
VHDL file for simulation purposes, but the VHDL compiler will not
generate any logic for them.

• Disconnect specifications

• Resolution functions

• Signal kind register

• Waveforms, except the first element value
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C.  VHDL for the ABEL-HDL
Designer

This Appendix compares ABEL-HDL and VHDL design strategies and is
intended for the experienced ABEL-HDL designer who has little or no
experience with VHDL. Included in this chapter are the following
topics:

• Design Input/Output

• Pin Numbers

• Combinational Logic

• Sequential Logic

• Registers

• State Machines

Design I/O

Describing Design I/O in ABEL-HDL

In ABEL-HDL, you use the pin keyword to declare input and output
signals that correspond to device I/O pins:

Clock, !Reset, S1 pin istype 'REG';

This statement specifies that the three signals (Clock, Reset and S1)
are all registered. Information about whether individual signals are
inputs or outputs not included in an ABEL pin declaration statement,
but is instead implied in the way that the signals are used in
subsequent design descriptions (such as equations).

Describing Design I/O in VHDL

In VHDL, you describe design I/O using port statements within an
entity declaration. A port statement is similar to a pinout description
for a circuit element: each pin has a type of data (value) associated
with it, and a flow direction (mode) associated with that data.
Correspondingly, each entry in a VHDL port statement has a mode and
value associated with it. The port statement has the following syntax:
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port (pin_list: [mode] type [; pin_list: [mode] type ...]);

The mode of a port in VHDL describes its dataflow direction. A port's
mode can be in, out, buffer, or inout. The default mode is in. (It is
good VHDL coding practice to include in for all input ports.) There is no
equivalent in ABEL-HDL to mode. Pin declarations in ABEL-HDL do not
indicate whether signals are inputs, outputs, or bidirectional. In ABEL-
HDL, direction information is determined by how the declared signals
are actually used in the design.

The following program segment illustrates simple design I/O in VHDL.
This example describes a circuit element with inputs a, b, and sel, and
output c.  a, b and c are 6-bit data types that can transmit data
corresponding to the integer values 0 through 63.

entity ent1 is
port (a,b: std_logic_vector (0 to 5); sel: std_logic;
    c: out std_logic_vector(0 to 5);
end ent1;

Note:  Unlike ABEL-HDL, VHDL is not case-sensitive. In VHDL,
ABC=AbC=abc. You should be aware, however, that some device -
specific ("back-end") programs are case sensitive, so you should
choose signal (and other) names that do not rely on case sensitivity or
insensitivity.

Pin and Node Numbers

Describing Pin Numbers in ABEL-HDL

In ABEL-HDL pin declarations, actual pin numbers can be specified in
the pin declarations, as in

clk, clr, Dir, OE   pin 1,2,3,11;

Describing Pin and Node Numbers in VHDL

VHDL does not have a language equivalent that allows pin number
declarations, so special signal attributes are used to pass pin and node
number information through the VHDL Synthesizer.

Note:  You specify pin and node numbers in the VHDL source file using
the custom attribute pinnum. This special attribute is recognized by the
VHDL synthesizer and is written to the output for use by device fitting
software.  For more information on the pinum attribute, refer to the
online help for VHDL.

The following example (the entity portion of a VHDL version of the
standard ABEL-HDL example cntbuf.abl) shows how to use port and
attribute statements in VHDL to make pin assignments.  Figure C-1 is
the block diagram.
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Figure C-1: Block Diagram for cntbuf Design

In this example, the port statement defines the data types. (This
example uses the IEEE 1164 std_logic data types. These data types
are described in detail in Chapter Error! Reference source not
found., “Error! Reference source not found..”) The VHDL pinnum
attribute statement is then used to assign actual pin numbers to the
design's I/O ports:

library ieee;
use ieee.std_logic_1164.all;

entity cntbuf is
    port(Dir: in std_logic;
        Clk,Clr,OE: in std_logic;
        A,B: inout std_logic_vector (0 to 1);
        Q: inout std_logic_vector (3 downto 0));

    attribute pinnum : string;  -- Define the attribute
    attribute pinnum of Clk: signal is  "1";
    attribute pinnum of Clr: signal is  "2";
    attribute pinnum of Dir: signal is  "3";
    attribute pinnum of OE: signal is  "11";
    attribute pinnum of A: signal is  "13,12";
                      -- Assigns A_0_ to 13, A_1_ to 12
    attribute pinnum of B: signal is  "19,18";
                      -- Assigns B_0_ to 19, B_1_ to 18
    attribute pinnum of Q: signal is  "17,16,15,14";

end cntbuf;

In this design, the bit vectors A, B, and Q must be given a list of pin
numbers according to the width of their data types. The order of the
list of pin numbers is significant. If the VHDL bit vectors are ordered
from least- to most-significant bit (LSB to MSB) using the to range
specifier, then the mapping signals to pins is also LSB to MSB (A(0)
would be mapped to pin 13 and A(1) would be mapped to pin 12).

Combinational Logic

Describing Combinational Logic in ABEL-HDL

In ABEL-HDL, you use the combinational assignment operator ('=') to
specify combinational logic in the Equations section of your program.
The following ABEL-HDL design uses equations to describe the function
of a simple 2-bit adder circuit:

module add

    a0,a1,b0,b1   pin;            "operands A and B
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    s1,s0         pin istype 'com'; "sum

    c0,c1         pin istype 'com'; "carry bits

equations

    c0 = b0 & a0;         " carry from bit 0

    s0 = b0 $ a0;         " sum of bit 0

    c1 = b1 $ a1;         " carry out

    s1 = b1 $ a1 $ c0;    " sum for bit 1

end

Describing Combinational Logic in VHDL

In VHDL, you can describe combinational logic using concurrent
statements in the architecture section of your program. The following
is a VHDL architecture describing the same adder:

architecture adder of add is
begin
    c0 <= b0 and a0;         -- carry from bit 0
    s0 <= b0 xor a0;         -- sum for bit 0
    c1 <= b1 xor a1;         -- carry out
    s1 <= b1 xor a1 xor c0;  -- sum for bit 1
end adder;

Registers

Describing Registers in ABEL-HDL

In ABEL-HDL, you can describe registered circuit elements by
specifying the various flip-flop inputs, such as clocks, resets and data
through the use of dot extensions like .CLK, .AR, and .D.  ABEL-HDL
also allows you to write registered output functions using pin-to-pin
syntax through the use of a registered assignment (:=). Using pin-to-
pin syntax, a D flip-flop is described in ABEL-HDL as:

    foo.CLK = clock;

    foo := Data # Preset

Describing Registers in VHDL
In ABEL-HDL, you specify registers when you supply inputs to register
macrocells that are inherently predefined in the language. In VHDL,
however, there is no inherent register behavior or macrocell, unless
one has been provided (written in VHDL as a procedure or component,
or implied by the defined behavior of a VHDL process). There is also no
direct equivalent in VHDL to ABEL-HDL's register assignment
statement. In VHDL, your description of registered operation will differ
depending on whether you are using structural, dataflow or behavioral
design methods. In structural or dataflow VHDL, your program must
define how the flip-flop operates. In behavioral VHDL, the actual flip-
flops can be implied, rather than specified.
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To describe a registered function in structural or dataflow VHDL, you
can add a procedure to define the memory elements. In the following
dataflow design example, a procedure is added to the previous design
description to implement the 2-bit adder with registered outputs:
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architecture adder_ff of add is
    signal f,g: bit;

    procedure dff(signal clk,d: bit;
                  signal q: out bit) is
    begin
        if clk and clk'event then
            q <= d;
        end if;
    end;
    procedure add(signal a0,a1,b0,b1: bit;
                  signal c0,c1 out bit) is
    variable x,y : bit
    begin
        c0 <= b0 and a0;        -- carry from bit 0
        s0 <= b0 xor a0;        -- sum for bit 0
        c1 <= b1 xor a1;        -- carry out
        s1 <= b1 xor a1 xor c0; -- sum for bit 1
    end;

begin
    add(a0,a1,b0,b1,f,g);

    dff(clk,f,c0);

    dff(clk,g,c1);
end adder_ff;

Since descriptions of registered logic using procedures can become
rather unwieldy, it is often easier to use behavioral descriptions for
designs. This is done by placing the combinational logic within a
process as shown below:

architecture behavior of my_and is
begin
    process(clk)
    begin
        if (clk and clk'event) then
            y <= a and b;
        end if;
    end process;
    q <= y;
end adder_ff;

See “Behavioral VHDL” in Chapter Error! Reference source not
found., “Error! Reference source not found.” for more information.

An alternative method of describing a concurrent registered
assignment (using features of the VHDL 1076-1993 standard) is to use
a selected signal assignment such as the following:

architecture dataflow of my_and is
  signal y: Boolean;
begin
    y <= a and b;
    q <= y when clk and clk'event;
end dataflow;
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or, using the IEEE 1164 std_logic data types (which are described in
more detail in Chapter Error! Reference source not found., “Error!
Reference source not found.” and in Chapter Error! Reference
source not found., “Error! Reference source not found.”):

architecture dataflow of my_and is
  signal y: std_logic;
begin
    y <= a and b;
    q <= y when rising_edge(clk);
end dataflow;

Note:  If you intend to process your VHDL designs using synthesis or
simulation tools that do not support the IEEE 1076-1993 standard,
then you should avoid using the preceding language style to describe
registered logic.

Avoiding Unwanted Latches

When you are describing combinational or registered logic using ABEL-
HDL, you are describing the conditions under which one or more
design outputs are to be asserted with a high value. For example, you
might describe a simple multiplexer using the following ABEL-HDL
statements:

module mux

    s0,s1         pin;       "select inputs

    a0,a1         pin;       "A inputs

    b0,b1         pin;       "B inputs

    c0,c1         pin;       "C inputs

    y1,y0         pin istype 'com'; "output Y

equations

    [y1,y0] = [a1,a0] & [s1,s0]

            # [b1,b0] & [s1,!s0]

            # [c1,c0] & [!s1,s0];

end

This simple design assigns the value of outputs y1 and y0 to the
values of a1 and a0 when s1 is high and s0 is high, to b1 and b0
when s1 is high and s0 is low, and to c1 and c0 when s1 is low and
s0 is high.

As written, the function of the multiplexer is incompletely specified,
since there is no value specified for the condition in which s1 and s0
are both low. In ABEL-HDL, the default logical condition is false (low)
so the values of y1 and y0 will be a logic low when s1 and s0 are both
low.

In VHDL, however, it is not always the case that an unspecified logic
condition will result in a low value on the output. Instead, the rules of
VHDL state that an unspecified condition will result in the output
holding its state. For synthesis purposes, this rule implies that a latch
must be inserted into the circuit.
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Perhaps the most common mistake that is made by new VHDL users
(who have had experience with PLD-oriented languages) is the
assumption that unspecified conditions will have no effect on the logic
of the generated circuit. Perhaps the most common example of this is
in the use if conditional assignments within process statements.
Consider, for example, the following VHDL description of the same
multiplexer just presented:

entity mux is
port (s0,s1,a0,a1,b0,b1,c0,c1: in bit;      --inputs
      y1,y0: out bit);                      --output Y
end mux;

architecture behavior of mux is
begin
    process(s0,s1,a0,a1,b0,b1,c0,c1)
    begin
        if    (s1,s0) = "11" then
              (y1,y0) <= (a1,a0);
        elsif (s1,s0) = "10" then
              (y1,y0) <= (b1,b0);
        elsif (s1,s0) = "01" then
              (y1,y0) <= (c1,c0);
    end process;
end

This design description is also incompletely specified; no value is
specified for the condition in which y1 and y0 are both low. Unlike the
ABEL-HDL version of this circuit, however, the rules of VHDL dictate
that the value of the outputs must be held over time, rather than
transition to a low state. For this design, the circuit that results must
include a latch, and the VHDL synthesizer will construct this latch by
feeding back the outputs to create an asynchronous feedback loop.

To prevent the creation of unwanted latches, you must make sure to
include all of the possible input conditions in your design descriptions.
In the case of conditional assignments such as the multiplexer, you
should include a terminating else statement that defines the default
value:

        if    (s1,s0) = "11" then
              (y1,y0) <= (a1,a0);
        elsif (s1,s0) = "10" then
              (y1,y0) <= (b1,b0);
        elsif (s1,s0) = "01" then
              (y1,y0) <= (c1,c0);

        else

              (y1,y0) <= "00";
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State Machines

Describing State Machines in ABEL-HDL

In ABEL-HDL, you describe a state machine similar to the way you
create a behavioral model in VHDL. You create a state description for
each possible state of the machine, beginning each with a description
of the state value to be stored in the state registers. For example:

module st_mach

    q1,q0      pin      istype 'reg';

    A,B        pin      istype 'com';

equations

    [q1,q0].clk = clock;

state_diagram [q1,q0]

    state [1,1]:

        A = 1;    "A is high in this state

        B = 1;    "B is high in this state

        if (start)

            then [1,1]   "Hold state

        else

            goto [0,0];  "Transition to 0,0
    .
    .
    .
end st_mach

In ABEL-HDL, you must specify the actual registers that are used (in
this case, q0 and q1) and the values to be stored in those registers
when in each state.

ABEL-HDL state diagrams are normally accompanied by one or more
equations describing the clock, reset or other additional functions for
the state registers.

Describing State Machines in VHDL

In VHDL, you write a behavioral model for the state machine,
typically by adding an if-then conditional statement and a case
statement inside of a process statement in your program. To more
clearly distinguish the clock logic of state machines (the registered
portion) from the transition logic (the combinational logic portion), it is
good practice to use two process statements as shown in the following
example. In this example, the first process describes the registered
behavior of the state machine, while the second process describes the
transition logic, and the combinational output logic for the machine:
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library ieee;
use ieee.std_logic_1164.all;

entity machine is
   port (clk,reset: in std_logic;
         state_inputs: in std_logic_vector (0 to 1);
         state_outputs: out std_logic_vector (0 to 1));
end machine;

architecture behavior of machine is
    type states is (st0, st1, st2, st3);
    signal present_state, next_state: states;
begin
    register: process (clk)
    begin
        if reset = '1' then
            present_state <= st0;        -- async reset to st0
        elsif rising_edge(clk) then
            present_state <= next_state; -- transition on clock
        end if;
    end process;

    transitions: process(present_state, state_inputs)
    begin
        case current_state is            -- describe transitions
            when st0 =>                  -- and comb. outputs
                state_outputs <= "00";
                if state_inputs = "11" then
                    next_state <= st0;   -- hold
                else
                    next_state <= st1;   -- next state
                end if;

            when st1 =>
                state_outputs <= "01";
                if state_inputs = "11" then
                    next_state <= st1;   -- hold
                else
                    next_state <= st2;   -- next state
                end if;

            when st2 =>
                state_outputs <= "10";
                if state_inputs = "11" then
                    next_state <= st2;   -- hold
                else
                    next_state <= st3;   -- next state
                end if;

            when st3 =>
                state_outputs <= "11";
                if state_inputs = "11" then
                    next_state <= st3;   -- hold
                else
                    next_state <= st0;   -- next state
                end if;

         end case;
    end process;
end behavior;

A variety of state machines designs are provided with your VHDL
Synthesizer software. The craps, prep3 and prep4 designs included
in the tutorials chapter of the VHDL Entry manaul are examples of
alternative ways to describe state machine designs in VHDL.
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A Standard ABEL-HDL Design in VHDL

The VHDL source file, cntbuf.vhd, shows how one of the standard
ABEL-HDL examples can be written in VHDL. This example
demonstrates:

• Pin assignments

• Bidirectional I/O

• Output enable conventions

• Synchronous reset logic

The complete VHDL description is listed below.

---------------------------------------------------------

-- VHDL Version of standard ABEL example CNTBUF.ABL

-- Michael Holley, Data I/O Corp.

--

-- Copyright 1994, Data I/O Corporation

--
library ieee;
use ieee.std_logic_1164.all;

entity cntbuf is
    port( Dir: in std_logic;
          Clk,Clr,OE: in std_logic;
          A,B: inout std_logic_vector(0 to 1) bus;
          Q: inout std_logic_vector (3 downto 0) bus);

    attribute pinnum : string;      -- Must define the attribute

    attribute pinnum of Clk : signal is  "1";
    attribute pinnum of Clr : signal is  "2";
    attribute pinnum of Dir : signal is  "3";
    attribute pinnum of OE : signal is  "11";
    attribute pinnum of A : signal is  "13,12";--A_0_=3,A_1_=12
    attribute pinnum of B : signal is  "19,18";--B_0_=19,B_1_=18
    attribute pinnum of Q : signal is  "17,16,15,14";

end cntbuf;
library dataio;
use dataio.std_logic_ops.To_Vector;
architecture example of cntbuf is
    signal Count: integer range 0 to 15;
begin
    process (Dir,A,B)             -- Bi-directional buffer
    begin
        if Dir = '1' then
            B  <= "ZZ";           -- Make B high Z

            A  <= B;
        else
            B  <= A;

            A  <= "ZZ";           -- Make A high Z
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        end if;
    end process;
    process (Clk,OE,Count)        -- Counter
    begin
        if rising_edge(Clk) then -- Edge triggered
            if Clr = '1' then
                Count <= 0;
            elsif Count = 15 then
                Count <= 0;
            else
                Count  <= Count + 1;
            end if;
        end if;
        if OE = '1' then
            Q <= "ZZZZ";          -- Make Q high Z
        else
            Q <= To_Vector(4,Count);
        end if;
    end process;
end example;

Design I/O

In this design, the I/O ports are assigned to pins as described earlier in
this chapter. (This design is intended for implementation in a 20-pin
PLD such as an Altera E0320.) Std_logic_vectors A and B represent
two bidirectional buffers controlled by the Dir input. The convention for
defining an output enable function in VHDL is to specify an assignment
to 'Z' for the disabled state. In this design, A, B and Q all have output
enable functions defined using 'Z'.

Combinational Logic

The combinational logic for A and B is defined in a process statement,
but could just as easily have been defined using concurrent
statements. (Whether to use concurrent statements or sequential
statements for combinational logic is largely a matter of personal
taste.) When a process statement is used to define a combinational
logic function, all of the inputs to that logic function must be entered in
the sensitivity list. In this case, the three inputs are Dir, A and B.

Registered Logic

The counter portion of this design is described in the second process
statement. This process statement includes both Clk and OE in its
sensitivity list because the output enable control for Q is not
dependent on the clock. The sensitivity lists for a process must contain
all inputs that are to be processed asynchronously. To provide a
clocking function for the counter, the counter logic is contained in an if
statement that describes the clock input using the previously described
convention for edge triggered flip-flop behavior.
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Because IEEE 1164 std_logic_vector data types do not have a '+'
operator defined for them, the counter portion of the design has been
described using an integer data type (the signal Count). A type
conversion function (To_Vector) has been used to convert the integer
data type into a std_logic_vector data type suitable for the design's
output. This type conversion function (and others) is provided in the
dataio library supplied with the VHDL option.
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D.  ABEL-HDL Language
Reference

The information in this appendix is provided to help you read and
interpret the logic equations that the Project Navigator produces in
reports and error messages. These equations use a subset of the ABEL-
HDL equation language to represent the logic of your design. These
equations are produced by most device fitter software, as well as the
equation report generator, which displays the Synthesized, Reduced
and Linked Equations.

The following equation is an example of the ABEL-HDL equation
syntax:

Q0_.D = A & Dir & Sel

      # B & !Dir & Sel

      # C  & Sel;

The equations displayed are in a sum-of-products (2-level) form, and
include the operators shown in Table C-1.

Table C-1: ABEL-HDL Operators

Operator Description

= Assignment

:= Registered Assignment

! Not (invert)

& AND

# OR

$ Exclusive-OR

!$ Exclusive-NOR
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Dot extensions
Identifier names used in ABEL-HDL equations may include dot
extensions. Dot extensions provide a means to refer specifically to
internal signals and nodes that are associated with a primary signal in
a design.

Dot extensions are used in complex language constructs, such as
nested sets or complex expressions.

Pin-to-Pin Vs.  Detailed Dot Extensions

Dot extensions refer to various circuit elements (such as register
clocks, presets, feedback and output enables) that are related to a
primary signal.

Some dot extensions are general purpose and are used with a wide
variety of device architectures.  These dot extensions are therefore
referred to as pin-to-pin (or "architecture-independent").  Other dot
extensions are intended for specific classes of device architectures, or
require specific device configurations.  These dot extensions are
referred to as detailed (or "architecture-dependent" or "device-
specific") dot extensions.

Table C-2 lists the ABEL-HDL dot extensions.  Pin-to-pin dot
extensions are indicated with a check in the Pin-to-Pin column.

Table C-2: Dot Extensions

Dot
Ext.

Pin-to-
pin

Description

.ACLR ü A device-independent asynchronous register
reset, equivalent to .AR with ISTYPE 'buffer'
(or .AP with ISTYPE 'invert').

.AP Asynchronous register preset

.AR Asynchronous register reset

.ASET ü A device-independent asynchronous register
preset, equivalent to .AP with ISTYPE 'buffer'
(or .AR with ISTYPE 'invert').

.CE Clock-enable input to a gated-clock flip-flop

.CLK1 ü Clock input to an edge-triggered flip-flop

.CLR ü A device-independent synchronous register
reset, equivalent to .SR with ISTYPE 'buffer'.
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Dot
Ext.

Pin-to-
pin

Description

.COM ü A combinational feedback from the flip-flop
data input, normalized to the pin value and
used to distinguish between pin (.PIN) and
internal logic array (.COM) feedback.

.D When on the left side of an equation, .D is
the data input to a D-type flip-flop; on the
right side, .D is combinational feedback.

.FB ü Register feedback

.FC Flip-flop mode control

.J J input to a JK-type flip-flop

.K K input to a JK-type flip-flop

.LD Register load input

.LE Latch-enable input to a latch

.LH Latch-enable (high) to a latch

.OE ü Output enable

.PIN ü Pin feedback

.PR Register preset (synchronous or
asynchronous)

.Q Register feedback

.R R input to an SR-type flip-flop

.RE Register reset (synchronous or
asynchronous)

.S S input to an SR-type flip-flop

.SET ü A device-independent synchronous register
preset, equivalent to .SP with ISTYPE
'buffer'.

.SP Synchronous register preset

.SR Synchronous register reset

.T T input to a T-type (toggle) flip flop
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Detailed Design Dot Extensions

Table C-3 shows the dot extensions that are used to describe different
register types.  The required dot extensions are indicated with a check
in the Extension Required column.

Table C-3: Dot Extensions for Device-specific (detailed) Designs

Register Type
Extensi
on
Requir
ed

Support
ed
Extensio
ns

Definition

combinational
(no register)

.oe

.pin

.com

output enable
pin feedback
combinational feedback

D-type flip-flop ü
ü

.clk

.d

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
data input
flip-flop mode control
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin

JK-type flip-
flop

ü
ü
ü

.clk

.j

.k

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
j input
k input
flip-flop mode control
output enable
flip-flop feedback
synchronous  preset
synchronous  reset
asynchronous  preset
asynchronous  reset
pin feedback

SR-type flip-
flop

ü
ü
ü

.clk

.s

.r

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
set input
reset input
output enable
flip-flop feedback
synchronous  preset
synchronous reset
asynchronous preset
asynchronous preset
pin feedback
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Register Type Extensio
n
Require
d

Supporte
d
Extensio
ns

Definition

T-type flip-flop ü
ü

.clk

.t

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
toggle input
output enable
flip-flop feedback
synchronous  preset
synchronous  reset
asynchronous  preset
asynchronous  reset
pin feedback

L-type latch ü
ü

.d

.le

.lh

.oe

.q

.pin

data input
latch enable input to a
latch
latch enable (high) input
to a latch
output enable
flip-flop feedback
pin feedback

Gated clock D
flip-flop

ü
ü

.clk or

.ce

.d

.oe

.q

.pin

clock or clock enable
data input
output enable
flip-flop feedback
pin feedback

Pin-to-Pin Design Dot Extensions

Table C-4 shows the dot extensions that are used (and which of those
are required) for pin-to-pin design descriptions.  The required dot
extensions are indicated with a check in the Required column.

Table C-4: Dot Extensions for Architecture-independent (pin-to-pin) Designs

Register
Type

Require
d

Allowabl
e
Extensio
ns

Definition

combinational
(no register)

none
.oe
.pin

output
output enable
pin feedback

registered
logic

ü .clr
.aclr
.set
.aset
.clk
.com
.fb
.pin

synchronous preset
asynchronous preset
synchronous set
asynchronous set
clock
combinational feedback
registered feedback
pin feedback



How to Control the Implementation of VHDL

D-6 VHDL Reference Manual

Figure C-1 through Figure C-9 show the effect of each dot extension.
The actual source of the feedback may vary from that shown.

Figure C-1:  Pin-to-pin Dot Extensions in an Inverted Output Architecture

Figure C-2: Pin-to-pin Dot Extensions in a Non-inverted Output Architecture

Figure C-3: Detailed Dot Extensions for an Inverted D-type Flip-flop Architecture
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Figure C-4: Detailed Dot Extensions for an Inverted T-type Flip-flop Architecture

Figure C-5: Detailed Dot Extension for an Inverted RS-type Flip-flop Architecture

Figure C-6: Detailed Dot Extensions for an Inverted JK-type Flip-flop Architecture
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Figure C-7: Detailed Dot Extensions for an Inverted Latch with Active High Latch
Enable

Figure C-8:  Detailed Dot Extensions for an Inverted Latch with Active Low Latch
Enable
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Figure C-9: Detailed Dot Extensions for an Inverted Gated-clock D Flip-flop
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