
© 1997, VLSI Technology 1

The Ten Commandments of Excellent
Design—VHDL Code Examples

Peter Chambers
Engineering Fellow
VLSI Technology

This short paper will give you some VHDL
code examples that will help you design
synchronous circuits that work first time.

Those Ten Commandments

Just in case you forgot, here are the Ten Commandments of Excellent Design:

1. All state machine outputs shall always be registered

2. Thou shalt use registers, never latches

3. Thy state machine inputs, including resets, shall be synchronous

4. Beware fast paths lest they bite thine ankles

5. Minimize skew of thine clocks

6. Cross clock domains with the greatest of caution. Synchronize thy sig-
nals!

7. Have no dead states in thy state machines

8. Have no logic with unbroken asynchronous feedback lest the fleas of
myriad Test Engineers infest thee

9. All decode logic must be crafted carefully—eschew asynchronicity

10. Trust not thy simulator—it may beguile thee when thy design is junk

How to Write Ten-Commandment Code

Conforming to the Ten Commandments is not difficult. In this section you’ll see
how to write VHDL (your author doesn’t do Verilog, but the translation is easy)

Ten-Commandment Code

2 The Ten Commandments of Excellent Design—VHDL Code Examples

that complies with the rules. Robust design and first-silicon success are the
goals!

The philosophy behind Ten-Commandment code is that synthesizers are not to
be trusted too much. Most of the code you will see is close to the structural
level; some more overtly than others.

Most of the code is self-explanatory. It is assumed that the reader is familiar with
VHDL. Signal names are also obvious to anyone “skilled in the art.”

Ten-Commandment Code

How to Create a Flip-Flop One of the basic primitives that we need to create robust synchronous designs
is the D-type flip-flop. Look at the code in Code Sample 1:

Code Sample 1. A D-Type Flip-Flop

This flip-flop has the following properties:

• An asynchronous active-low clear input sets the Q output to zero.

• It is triggered on the rising edge of the clock.

-- VHDL Code for a D-Type Flip-Flop with an
-- Asynchronous Clear

D_Type_Flip_Flop: process(Reset_n, Clock_In)

begin

if (Reset_n = ’0’) then

Q_Output <= ’0’ after 1 ns;

elsif (Clock_In’event and Clock_In = ’1’) then

Q_Output <= D_Input after 1 ns;

end if;

end process D_Type_Flip_Flop;

Ten-Commandment Code

The Ten Commandments of Excellent Design—VHDL Code Examples 3

How to Create a Latch While the Ten Commandments specifically forbid the use of latches, there are
still those heretics who will insist on the use of latches. The code to instantiate a
transparent latch is shown in Code Sample 2:

Code Sample 2. A Transparent Latch

This latch has the following properties:

• A latch control that opens the latch when high (the latch is transparent).

-- VHDL Code for a Transparent Latch

Latch_Data: process(Latch_Open, D_Input)

begin

if (Latch_Open = ’1’) then

Latched_Data <= D_Input;

-- If Latch_Open = 0, then Latched_Data keeps its old value,
-- i.e. the latch is closed.

end if;

end process Latch_Data;

Ten-Commandment Code

4 The Ten Commandments of Excellent Design—VHDL Code Examples

How to Create a Metastable-
Hardened Flip-Flop

The use of a metastable-hardened flip flop is nothing more than the direct
instantiation of a suitable library element—in this case, a “dfntns” flip-flop. This
is pure structural VHDL. The component declaration is shown in Code
Sample 3:

Code Sample 3. A Metastable-Hardened Flip-Flop, Component
Declaration

To use the flip-flop in your circuit, instantiate it as shown in Code Sample 4:

Code Sample 4. A Metastable-Hardened Flip-Flop, Instantiation

This flip-flop has the following properties:

• A maximum clock-to-out time under worst-case setup and hold time viola-
tions. This time is available in the library element specifications.

-- VHDL Code for a Nice Metastable-Hardened Flip-Flop

component dfntns

Port (

CP : In std_logic;

D : In std_logic;

Q : Out std_logic

);

end component;

-- VHDL Code to Instantiate the Metastable-Hardened Flip-Flop

Metastable_Hardened_Flip_Flop_Please: dfntns port map (

D => D_Input,

CP => Clock_In,

Q => Q_Output

);

The Care and Feeding of Toggle Signals

The Ten Commandments of Excellent Design—VHDL Code Examples 5

The Care and Feeding of Toggle Signals

Receiving a Toggle Signal The Ten Commandments paper suggested that a method for exchanging single-
point information across clock domains is by the use of toggle signals. Here, it is
assumed that the toggle event should generate an active-high pulse to pass to a
state machine. Every toggle—rising edge and falling edge—must create the
pulse. In addition, the pulse must be synchronized correctly to the receiver’s
clock. The code to accomplish this is shown in Code Sample 5:

Code Sample 5. Receiving a Toggle Signal

When synthesizing this code, remember to use the “fix hold” option so a fast
path doesn’t occur between the two flip-flops in this circuit.

-- VHDL Code to Create a Pulse from an Asynchronous
-- Toggle Signal

-- First, use a metastable-hardened flip-flop to synchronize the
-- toggle input

Metastable_Hardened_Flip_Flop_Please: dfntns port map (

D => Handshake_T,

CP => Clock_In,

Q => Sync_Handshake_T

);

-- Now pass the synchronized toggle through another flip-flop

Toggle_Reg_Proc: process(Clock_In)

begin

if (Clock_In'event and Clock_In = ’1’) then

Reg_Handshake_T <= Sync_Handshake_T after 1 ns;

end if;

end process Toggle_Reg_Proc;

-- Finally XOR the two synchronized signals to create a pulse

Toggle_Pulse <= Reg_Handshake_T xor Sync_Handshake_T;

The Care and Feeding of Toggle Signals

6 The Ten Commandments of Excellent Design—VHDL Code Examples

Generating a Toggle Signal Recall that a toggle signal is generated by simply inverting a level to pass the
information. The trivial code to do this is shown in Code Sample 6. The suffix
“_T” is used to denote a toggle signal.

Code Sample 6. Generating a Toggle Signal

-- VHDL Code to Create a Toggle Signal

Handshake_T <= not (Handshake_T) after 1 ns;

The Beginner’s Guide to State Machines

The Ten Commandments of Excellent Design—VHDL Code Examples 7

The Beginner’s Guide to State Machines

Introduction The creation of state machines is a mixture of art and science. A well-crafted
state machine will possess a sense of elegance; it will be appealing, both func-
tionally and visually.

Here, a very simple example is presented as an illustration of state machine
design. The state diagram for the Flintstones State Machine is shown in
Figure 1

Figure 1. The Flintstones State Machine

The Flintstones State Machine operates as follows:

1. The State Machine has two states, State Bed and State Rock.

2. There is one output, Fred, which takes the value 0 in State Bed and 1 in
State Rock.

3. A reset, caused by a low level on Reset_n, puts the State Machine into
State Bed.

4. The State Machine waits in State Bed while Barney is low, and enters
State Rock when Barney goes high.

5. The State Machine then waits in State Rock while Wilma is low, and returns
to State Bed when Wilma goes high.

State

Fred = 0

State

Fred = 1

Reset_n = 0

Barney = 1

Barney = 0 Wilma = 0

Wilma = 1

Bed Rock

The Beginner’s Guide to State Machines

8 The Ten Commandments of Excellent Design—VHDL Code Examples

Implementing the
Flintstones State Machine

An example implementation of the Flintstones State Machine is shown in Code
Sample 7 and Code Sample 8

Code Sample 7. Implementation of the Flintstones State Machine
(First Part)

-- VHDL Code to Implement the Flintstones State Machine

Flintstones_SM_Proc: process(Sync_Reset_n, Clock_In)

-- Enumerate state types:

type Flintstones_Statetype is (

Bed, Rock

);

-- define the state variable:

variable Flint_State: Flintstones_Statetype;

-- Here’s the state machine:

begin

-- Define the asynchronously set reset states...

if (Sync_Reset_n = ’0’) then

Fred <= ’0’ after 1 ns;

Flint_State := Bed

-- Default conditions for each output, in this case identical to the
-- reset state:

elsif (Clock_In’event and Clock_In = ’1’) then

Fred <= ’0’ after 1 ns;

-- Here are the state transitions:

(Continued on next Code Sample listing)

The Beginner’s Guide to State Machines

The Ten Commandments of Excellent Design—VHDL Code Examples 9

Code Sample 8. Implementation of the Flintstones State Machine
(Second Part)

case Flint_State is

when Bed =>

-- Transition from Bed to Rock:

if (Barney = ’1’) then

Fred <= ’1’ after 1 ns;

Flint_State := Rock;

-- Holding term in Bed:

else

Flint_State := Bed;

end if;

when Rock =>

-- Transition from Rock to Bed:

if (Wilma = ’1’) then

Fred <= ’0’ after 1 ns;

Flint_State := Bed;

-- Holding term in Rock:

else

Fred <= ’1’ after 1 ns;

Flint_State := Rock;

end if;

-- Default term for dead states:

when others =>

Flint_State := Bed;

end case;

end if;

end process Flintstones_SM_Proc;

Conclusions

10 The Ten Commandments of Excellent Design—VHDL Code Examples

Notes on the State machine
Implementation

For the most part, the Flintstones State Machine’s operation should be clear. A
few points are worth noting, however:

1. The reset signal (Sync_Reset_n) is synchronized with Clock_In before
being sent to the State Machine.

2. Barney and Wilma must also be synchronous to Clock_In; at the very least,
there must be an assurance that the State Machine’s state and output regis-
ter’s setup and hold times are not violated.

3. This design assigns a default value to each output and to the state variable
before entering the case statement. This ensures that only those signals
that are not taking default (usually inactive) values need be listed in the
case statement. This is optional; it is entirely reasonable to list every signal
under each transition term, including inactive signals.

4. Note that the output signal Fred comes directly from a D-type flip-flop: it is
not a decode of the state variable. This ensures Fred’s cleanliness (so to
speak).

5. The “when others” in the case statement handles the possibility that the
State Machine might end up in a dead state.

Conclusions

The code examples in this document should be considered as examples only.
There are many ways to code excellent VHDL; this code is a place to start. If
you have a neat snippet of VHDL to add to the list, please contact the author!

Contact Information

Here’s how to contact the author:

Peter Chambers

VLSI Technology, Inc.
8375 South River Parkway, M/S 250
Tempe, Arizona 85284

Phone: 602 752 6395

Email: peter.chambers@vlsi.com

