
© 2002© 2004 Altera Corporation

Nios IINios II
uC/OS-II porting with Nios IIuC/OS-II porting with Nios II

2
© 2004 Altera Corporation

µC/OS-II
Main Features
µC/OS-II
Main Features

Portable (Most 8, 16, 32 and 64 bit CPUs)
ROMable
Scalable
Preemptive
Real-Time
− Deterministic
− High Performance

Multitasking
Robust
Provides many services

3
© 2004 Altera Corporation

µC/OS-II
ROMable and Scalable
µC/OS-II
ROMable and Scalable

Designed for Embedded Systems
Footprint depends on your needs:
− Semaphores, Mutex, Event Flags, Mailboxes, Queues …
− ROM (Code space) – NIOS-II:

5 Kbytes (Min.)
20 Kbytes (Max.)

− RAM (Data space) – NIOS-II:
1 Kbytes (Min.), plus task stacks
5 Kbytes (Max.), plus task stacks

4
© 2004 Altera Corporation

µC/OS-II
Services
µC/OS-II
Services

Semaphores
Mutual Exclusion Semaphores
− Reduces Priority Inversions

Event Flags
Message Mailboxes
Message Queues
Memory Management
Time Management
Task Management

5
© 2004 Altera Corporation

6
© 2004 Altera Corporation

µC/OS-II
Used in 100s of Commercial Products
µC/OS-II
Used in 100s of Commercial Products
Avionics
Medical
Cell phones
Routers and switches
High-end audio equipment
Washing machines and dryers
UPS (Uninterruptible Power Supplies)

Industrial controllers
GPS Navigation Systems
Microwave Radios
Instrumentation
Point-of-sale terminals
Many, many more

© 2002© 2004 Altera Corporation

µC/OS-II
The Real-Time Kernel
µC/OS-II
The Real-Time Kernel

Foreground/Background
Systems

8
© 2004 Altera Corporation

Products without Kernels
(Foreground/Background Systems)
Products without Kernels
(Foreground/Background Systems)

Foreground #2 ISR #2

Foreground #1 ISR #1 ISR #1

Background Task #1 Task #2 Task #3

Infinite loop

Time

© 2004 Altera Corporation

Foreground/BackgroundForeground/Background

/* Foreground */
ISR (void)
{

Handle asynchronous event;
}

© 2004 Altera Corporation

/* Background */
void main (void)
{
Initialization;
FOREVER {
Read analog inputs;
Read discrete inputs;
Perform monitoring functions;
Perform control functions;
Update analog outputs;
Update discrete outputs;
Scan keyboard;
Handle user interface;
Update display;
Handle communication requests;
Other...

}
}

Real-Time Kernels
and

µC/OS-II

11
© 2004 Altera Corporation

Software that manages the time of a
microprocessor or microcontroller.
− Ensures that the most important code runs first!

Allows Multitasking:
− Do more than one thing at the same time.
− Application is broken down into multiple tasks each handling one

aspect of your application
− It’s like having multiple CPUs!

Provides valuable services to your application:
− Time delays
− Semaphore management
− Intertask communication and synchronization
− More

What is a Real-Time Kernel?What is a Real-Time Kernel?

© 2004 Altera Corporation

µC/OS-II is a Preemptive KernelµC/OS-II is a Preemptive Kernel

© 2004 Altera Corporation

ISR

Low Priority Task (LPT)

High Priority Task (HPT)

Interrupt Occurs
Vector to ISR

ISR makes High Priority Task Ready

ISR
Completes

(Switch to HP Task)
ISR

HP Task Completes
(Switch back to LP Task)

What is a Task?What is a Task?

© 2004 Altera Corporation

A task is a simple program that thinks it has
the CPU all to itself.

Each Task has:
− Its own stack space
− A priority based on its importance

A task contains YOUR application code!

What is a Task?What is a Task?

A task is an infinite loop:

void Task(void *p_arg)
{

Do something with ‘argument’ p_arg;
Task initialization;
for (;;) {

/* Processing (Your Code) */
Wait for event; /* Time to expire ... */

/* Signal from ISR ... */
/* Signal from task ... */

/* Processing (Your Code) */
}

}

© 2004 Altera Corporation

Dormant

Ready

Waiting
For

Event
Running ISR

© 2004 Altera Corporation

Event Occurs
Or

Timeout

Resident in ROM
(Non-active)

Wait for time to expire
Wait for a message
Wait for a signal

Task StatesTask States
Delete
Task

Wait
For

Event

Context
Switch

Create
Task

Waiting
For

Execution

‘Creating’ a Task‘Creating’ a Task

µC/OS-II needs to have information about your task:
− Its starting address
− Its top-of-stack (TOS)
− Its priority
− Arguments passed to the task
− Other

You create a task by calling a service provided by
µC/OS-II – OSTaskCreateExt()

© 2004 Altera Corporation

Creating a Task
Stack … Task Create … Task Code
Creating a Task
Stack … Task Create … Task Code

© 2004 Altera Corporation

#define APP_TASK_ID 10
#define APP_TASK_PRIO 10
#define APP_TASK_STK_SIZE 256

static OS_STK AppTaskStk[APP_TASK_STK_SIZE];

OSTaskCreateExt(AppTask, // Task address
(void *)0, // ‘p_arg’
&AppTaskStk[APP_TASK_START_STK_SIZE - 1], // Top-Of-Stack
APP_TASK_PRIO, // Task priority
APP_TASK_ID, // Task ID (not used)
&AppTaskStk[0], // Bottom-Of-Stack
APP_TASK_STK_SIZE, // Stack size
(void *)0, // ‘p_ext’
0x0000); // Options

OSTaskNameSet(APP_TASK_PRIO, "App Task", &err);

static void AppTask (void *p_arg)
{

while (1) {
OSTimeDly(5);

}
}

Task Stack

Create a Task

Assigning a Name to a Task

Task (Infinite Loop)

Suspend for 5 ticks

Creating a Task for NIOS-IICreating a Task for NIOS-II
pstk

19
© 2004 Altera Corporation

OSTCBStkPtr

OSTCBPrio
OSTCBStat

$ctl31 STATUS
$1
$2
$3
$4
$5
$6
$7
$8
$9

$10
$11
$12
$13
$14

$23

$15
$16
$17
$18
$19
$20
$21
$22

$24
$25

$26 (gp)
$28 (fp)
$29 (ta)
$30 (ba)

OS_TCB

ptos

Task Control Block
(TCB)

Stack Frame

HIGH Memory

$27

OSTaskCreateExt(void (*task)(void *parg),
void *parg,
void *ptos,
INT8U prio
INT16U id,
void *pbos,
INT32U stk_size,
void *p_ext,
INT16U opt);

$31 (ra)

Task Control Blocks
(TCBs)
Task Control Blocks
(TCBs)

A TCB is a data structure that is used by the
kernel for task management.
Each task is assigned a TCB when it is ‘created’.
A TCB contains:
− The task’s priority
− The task’s state (Ready, Waiting ...)
− A pointer to the task’s Top-Of-Stack (TOS)
− Other task related data

TCBs reside in RAM

© 2004 Altera Corporation

Scheduling
and

Context Switching

21
© 2004 Altera Corporation

What is Scheduling?What is Scheduling?

Deciding whether there is a more important task to run.

Occurs:
− When a task decides to wait for time to expire
− When a task sends a message or a signal to another task
− When an ISR sends a message or a signal to a task

Occurs at the end of all nested ISRs

Outcome:
− Context Switch if a more important task has been made ready-to-

run or returns to the caller or the interrupted task

22
© 2004 Altera Corporation

The µC/OS-II Ready ListThe µC/OS-II Ready List

23
© 2004 Altera Corporation

62 61 60 59 58 57 5663

54 53 52 51 50 49 4855

46 45 44 43 42 41 4047

38 37 36 35 34 33 3239

30 29 28 27 26 25 2431

22 21 20 19 18 17 1623

14 13 12 11 10 9 815

6 5 4 3 2 1 07

6 5 4 3 2 1 07

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0]

OSRdyGrp

A ‘1’ means one of the tasks in ROW #0 is READY
A ‘0’ means NONE of the tasks in ROW #0 is READY

OSRdyTbl[]

Lowest Priority Task
(Idle Task)

Task Priority #

Y

X

A ‘1’ means the task is READY
A ‘0’ means the task is NOT READY

Finding the Highest Priority Task ReadyFinding the Highest Priority Task Ready

OSRdyGrp
0xF6

0 0 0 0 0 0 01

0 0 0 0 0 0 10

0 1 0 0 0 0 00

0 1 0 0 1 0 00

0 0 0 0 0 0 00

0 1 0 0 0 0 00

1 1 1 1 0 0 00

0 0 0 0 0 0 00

1 1 1 0 1 1 01
OSRdyTbl[]

© 2004 Altera Corporation

0x78

Task Priority

0 0 0 1 0 1 10

Lookup
Table

Y = 1
[0]

Lookup
Table

Y = 1 X = 3

Y = 1 X = 3

Bit Position
#11

[1]

11

25
© 2004 Altera Corporation

Priority Resolution TablePriority Resolution Table
/**
* PRIORITY RESOLUTION TABLE
*
* Note(s): 1) Index into table is bit pattern to resolve
* highest priority.
* 2) Indexed value corresponds to highest priority
* bit position (i.e. 0..7)
**/
INT8U const OSUnMapTbl[] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x00-0x0F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x10-0x1F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x20-0x2F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x30-0x3F
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x40-0x4F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x50-0x5F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x60-0x6F

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x70-0x7F
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x80-0x8F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x90-0x9F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xA0-0xAF
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xB0-0xBF
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xC0-0xCF
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xD0-0xDF
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xE0-0xEF

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 // 0xF0-0xFF
};

(Step #2)
X = @ [0x78]
(i.e. 0x78 = OSRdyTbl[1])

(Step #1)
Y = @ [0xF6]
(i.e. 0xF6 = OSRdyGrp)

Priority ResolutionPriority Resolution

Y = OSUnMapTbl[OSRdyGrp];
X = OSUnMapTbl[OSRdyTbl[Y]];
HighestPriority = (Y * 8) + X;

Y (i.e. 1) = OSUnMapTbl[0xF6];
X (i.e. 3) = OSUnMapTbl[0x78];
HighestPriority = (1 * 8) + 3;

HighestPriority = 11

26
© 2004 Altera Corporation

SchedulingScheduling
OSRdyGrp OSRdyTbl[] OSTCBPrioTbl[] Old TCB

1 1 1 0 1 1 01

0 0 0 0 0 0 01

0 0 0 0 0 0 10

0 1 0 0 0 0 00

0 1 0 0 1 0 00

0 0 0 0 0 0 00

0 1 0 0 0 0 00

1 1 1 1 0 0 00

0 0 0 0 0 0 00

27
© 2004 Altera Corporation

[0]

[1]

[2]

[3]
[4]

[5]

[6]
HPT Ready

(Bit 11)
[7]

[8]

[9]
New TCB[10]

[11]

(1)
Find

Highest Priority Task
Ready (2)

Index to Find TCB [60]

11 [61]

[62]

[63]

Context Switch
(or Task Switch)
Context Switch
(or Task Switch)

28
© 2004 Altera Corporation

Once the kernel finds a NEW ‘High-Priority-
Task’, the kernel performs a Context Switch.

The context is the ‘volatile’ state of a CPU
− The NIOS-II CPU registers

A context switch consist of:
− Saving the current CPU registers onto the CURRENT

task’s stack
− Restoring the CPU registers from the NEW task’s

stack

Interrupts

29
© 2004 Altera Corporation

InterruptsInterrupts

Interrupts are always more important than
tasks!

Interrupts are always recognized
− Except when they are disabled by µC/OS-II

or the application

You should keep ISRs (Interrupt Service
Routines) as short as possible.

© 2004 Altera Corporation

InterruptsInterrupts

YourISR:
Save CPU Registers;
Notify kernel of ISR entry;
Determine SOURCE of interrupt;

Process ISR(s) (Your code!);
/* Take care of device */
/* Buffer data */
/* Clear interrupt */
/* Signal task to process data */

Notify kernel about end of ISR;
Restore CPU Registers;
Return from Interrupt;

ISR from vector

If a more important task is Ready,
the Kernel will do a Context Switch

© 2004 Altera Corporation

There are no HP Task Ready,
Return to Interrupted Task!

© 2004 Altera Corporation

ISR (3):
Save CPU Registers (4);
OSIntNesting++ (5);
if (OSIntNesting == 1)

OSTCBCur->OSTCBStkPtr = SP;
Process ISR (6);
Call Kernel ISR Exit function

(7);
Restore CPU Registers (8);
Return from Interrupt (9);

Servicing InterruptsServicing Interrupts

TASK

Vect

Save

Ent

User ISR

Exit

TASK

Sched.

HPT Task

Exit

(1) (2), Interrupts enabled

(3)

(4)
(5)

(6)
(7), Kernel ISR Exit function

(8), Restore

(9), RTI

(8), Restore

(9), RTI

Interrupt Response

Interrupt Recovery

Interrupt Recovery

(7), Kernel ISR Exit function

No HPT Ready

HPT Ready
Do Context Switch

µC/OS-II requires a periodic interrupt source
− Through a hardware timer

Between 10 and 100 ticks/sec. (Hz)

− Could be the power line frequency
50 or 60 Hz

− Called a ‘Clock Tick’ or ‘System Tick’
− Higher the rate, the more the overhead!

The tick ISR calls a service provided by the
µC/OS-II called OSTimeTick()

The Clock Tick ISRThe Clock Tick ISR

© 2004 Altera Corporation

To allow tasks to suspend execution for a
certain amount of time
− In integral number of ‘ticks’

OSTimeDly(ticks)

− In Hours, Minutes, Seconds and Milliseconds
OSTimeDlyHMSM(hr, min, sec, ms)

To provide timeouts for other services (more on
this later)
− Avoids waiting forever for events to occur
− Eliminates deadlocks

Why keep track of Clock Ticks?Why keep track of Clock Ticks?

© 2004 Altera Corporation

Resource Sharing

35
© 2004 Altera Corporation

Resource SharingResource Sharing

YOU MUST ensure that access to common
resources is protected!
− µC/OS-II only gives you mechanisms

You protect access to common resources by:
− Disabling/Enabling interrupts

Some CPUs don’t allow you to do this in ‘user’ code

− Lock/Unlock
− Semaphores
− MUTEX (Mutual Exclusion Semaphores)

© 2004 Altera Corporation

Resource Sharing
(Disable and Enable Interrupts)
Resource Sharing
(Disable and Enable Interrupts)

When access to resource is done quickly
− Be careful with Floating-point!

Disable/Enable interrupts is the fastest way!

rpm = 60.0 / time;
OS_ENTER_CRITICAL();
Global RPM = rpm;
OS_EXIT_CRITICAL();

© 2004 Altera Corporation

Resource Sharing
(Lock/Unlock the Scheduler)
Resource Sharing
(Lock/Unlock the Scheduler)

‘Lock’ prevents the scheduler from changing tasks
− Interrupts are still enabled
− Can be used to access non-reentrant functions
− Can be used to reduce priority inversion
− Same effect as making the current task the Highest Priority

Task

‘Unlock’ invokes the scheduler to see if a High-Priority
Task has been made ready while locked

© 2004 Altera Corporation

OSSchedLock();
Code with scheduler disabled;
OSSchedUnlock;

Mutual Exclusion
(Semaphores)
Mutual Exclusion
(Semaphores)

Used when time to access a resource is
longer than the kernel interrupt disable time!

Binary semaphores are used to access a
single resource

Counting semaphores are used to access
multiple resources

© 2004 Altera Corporation

Mutual Exclusion
(Semaphores)
Mutual Exclusion
(Semaphores)

© 2004 Altera Corporation

Resource

Variable(s)
Data Structure(s)
I/O Device(s)

Task 1
High

Task 2
Medium

Task 3
Low

Semaphore

Tasks

OSSemPend(..);
Access Resource;
OSSemPost(..);

Semaphores
(Priority Inversion)
Semaphores
(Priority Inversion)

Delay to a task’s execution caused by interference
from lower priority tasks
All tasks of medium priority would delay access of
the HPT to the resource!

© 2004 Altera Corporation

Low Priority Task

Medium Priority Task

High Priority Task

Task Gets
Semaphore

High Priority Task
Preempts Low One

LPT Releases
Semaphore

Task needs semaphore …
LPT owns it

Medium Priority Done

Medium Priority Task
Preempts Low One

Semaphores
(Priority Inheritance)
Semaphores
(Priority Inheritance)

Low Priority task assumes priority of High Priority task while
accessing semaphore.
µC/OS-II has automatic priority ceiling protocols.

© 2004 Altera Corporation

Low Priority Task

Medium Priority Task

High Priority Task

Task Gets
Semaphore

High Priority Task
Preempts Low One

Task
Needs

Semaphore

Kernel raises
LPT’s Priority

HPT is done

LPT is done with
Semaphore

MPT is done

Intertask Communication

43
© 2004 Altera Corporation

Event FlagsEvent Flags

Synchronization of tasks with the occurrence of multiple events

Events are grouped
− 8, 16 or 32 bits per group

Types of synchronization:
− Disjunctive (OR): Any event occurred
− Conjunctive (AND): All events occurred

Task(s) or ISR(s) can either Set or Clear event flags

Only tasks can Wait for events

© 2004 Altera Corporation

Event FlagsEvent Flags

TASKsISRs

Set or Clear

Events
(8, 16 or 32 bits)

© 2004 Altera Corporation

OR

AND

TASKsWait

TASKsWait

Message passing
− Message is a pointer
− Pointer can point to a variable or a data structure

FIFO (First-In-First-Out) type queue
− Size of each queue can be specified to the kernel

LIFO (Last-In-First-Out) also possible
Tasks or ISR can ‘send’ messages
Only tasks can ‘receive’ a message
− Highest-priority task waiting on queue will get the message

Receiving task can timeout if no message is
received within a certain amount of time

Message QueuesMessage Queues
Message
Queue

ISR or Task Task

© 2004 Altera Corporation

Miscellaneous Services

47
© 2004 Altera Corporation

Stack CheckingStack Checking

Stacks can be checked at run-time to see if you
allocated sufficient RAM
− Assumes you created your task with

OSTaskCreateExt()

Allows you to know the ‘worst case’ stack growth
of your task(s)

Assumes stack is cleared when task is created
− Could check for other patterns than 0x00

© 2004 Altera Corporation

Deleting a TaskDeleting a Task

Tasks can be deleted (return to the ‘dormant’
state) at run-time
− Task can no longer be scheduled

Code is NOT actually deleted
Can be used to ‘abort’ (or ‘kill’) a task
TCB freed and task stack could be reused.

INT8U OSTaskDel(INT8U prio);
INT8U OSTaskDelReq(INT8U prio);

© 2004 Altera Corporation

Changing a Task’s PriorityChanging a Task’s Priority

Kernel can allow tasks to change their
priority (or the priority of others) at run-
time
INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

© 2004 Altera Corporation

Memory ManagementMemory Management

© 2004 Altera Corporation

µC/OS-II provides fixed-sized memory block
management
− Prevents fragmentation

Multiple ‘partitions’ can be created with each having a
different block size

You MUST ensure that you return blocks to the
proper partition.

Partitions can be ‘extended’ from a larger block.

InitializationInitialization
µC/OS-II provides an initialization function

You must create at least one task before starting
multitasking

© 2004 Altera Corporation

void main (void)
{

/* User initialization */

OSInit(); /* Kernel Initialization */

/* Install interrupt vectors */

/* Create at least 1 task (Start Task) */
/* Additional User code */

OSStart(); /* Start multitasking */
}

InitializationInitialization

53
© 2004 Altera Corporation

You should initialize the ‘ticker’ in the first
task to run.
− Setup hardware timer,
− Enable timer interrupt

void AppTaskStart (void)
{

/* Task Initialization */
/* Setup hardware timer for CLOCK tick */
/* Enable GLOBAL interrupts */
/* Create OTHER tasks as needed */

while (1) {
/* Task body (YOUR code) */

}
}

POP-QuizPOP-Quiz
다음중 µC/OS-II에대한설명중잘못된것
은무엇입니까?
A) Task가 Semaphore를획득하는방법은가장
우선순위가높은 Task인경우이다.

B) µC/OS-II는자동으로 Stack검사를하지는않
는다.

C) Non-preemptive Real-time Kernel이다.
D) 최대 64개의 Task를지원한다.

54
© 2004 Altera Corporation

	Nios II
	µC/OS-IIMain Features
	µC/OS-IIROMable and Scalable
	µC/OS-IIServices
	µC/OS-IIUsed in 100s of Commercial Products
	µC/OS-IIThe Real-Time Kernel
	Products without Kernels(Foreground/Background Systems)
	Foreground/Background
	What is a Real-Time Kernel?
	µC/OS-II is a Preemptive Kernel
	What is a Task?
	What is a Task?
	Task States
	‘Creating’ a Task
	Creating a TaskStack … Task Create … Task Code
	Creating a Task for NIOS-II
	Task Control Blocks(TCBs)
	What is Scheduling?
	The µC/OS-II Ready List
	Finding the Highest Priority Task Ready
	Priority Resolution Table
	Priority Resolution
	Scheduling
	Context Switch(or Task Switch)
	Interrupts
	Interrupts
	Servicing Interrupts
	The Clock Tick ISR
	Why keep track of Clock Ticks?
	Resource Sharing
	Resource Sharing(Disable and Enable Interrupts)
	Resource Sharing(Lock/Unlock the Scheduler)
	Mutual Exclusion(Semaphores)
	Mutual Exclusion(Semaphores)
	Semaphores(Priority Inversion)
	Semaphores(Priority Inheritance)
	Event Flags
	Event Flags
	Message Queues
	Stack Checking
	Deleting a Task
	Changing a Task’s Priority
	Memory Management
	Initialization
	Initialization
	POP-Quiz

