
© 2002© 2004 Altera Corporation
1

Advanced Synthesis:
Muliplexer Optimization
Advanced Synthesis:
Muliplexer Optimization

ObjectivesObjectives
Teach How to Get Most Out of HDL When
Coding Muxes for 4-Input LUT-Based Devices
Provide Insights Into How Synthesis Deals with
Muxes
− Research Done for Quartus II, Most Applies to Other

EDA Tools Too
Present New Quartus II Synthesis
Enhancements and Future Enhancements
− Includes Hidden INI Variable for MUX Optimization

2
© 2004 Altera Corporation

Lessons LearnedLessons Learned
Typically, We Improve Synthesis/Fitting Results
By Optimizing “Final” Designs
In Reality, Many Customers Change Their
Designs to Fit Synthesis!
− Especially for New FPGA Architectures
− Customers Don’t Know What Works Well

Optimizations Often Require Human Knowledge
of Design
− Synthesis Can Not Always Know the Design Intent
− Customer Is In Best Position to Improve QoR!

Some of the Work Has to be Manual!

3
© 2004 Altera Corporation

How Often Do Multiplexers
Occur? Why Mux Optimization?
How Often Do Multiplexers
Occur? Why Mux Optimization?

4
© 2004 Altera Corporation

Muxes
26%

Arithmetic(+,<,=)
11%

Wide-AND
11%

Wide-XOR
3%

Lonely-Reg
18%

Other
31%

Muxes
Arithmetic(+,<,=)
Wide-AND
Wide-XOR
Lonely-Reg
Other

Mean LE Usage After Synthesis
− 100 Customer Benchmark Designs

AgendaAgenda

Background/Theoretical

Design Guidelines

Quartus II Project to Improve MUX Synthesis

5
© 2004 Altera Corporation

Agenda - Background/TheoreticalAgenda - Background/Theoretical
Where do Multiplexers come from?
How Are Multiplexers Implemented in Synthesis
(especially Quartus II)?
An Improved Multiplexer Implementation
Implicit Multiplexing
Taking Advantage of Implicit Multiplexing

6
© 2004 Altera Corporation

© 2002© 2004 Altera Corporation
7

Where Do Multiplexers
Come From?
Where Do Multiplexers
Come From?

Types of MultiplexersTypes of Multiplexers
Binary Multiplexers
− CASE Statements

Selector Multiplexers
− CASE Statements
− State Machines
− IF Statements

Priority Multiplexers
− IF Statements

The Synthesis Tool Chooses Which Kind of
MUX to Implement from Your HDL!

8
© 2004 Altera Corporation

How Are CASE Statements
Synthesized?
How Are CASE Statements
Synthesized?

Selector Multiplexer Used in Quartus II:
− If Selecting Is Based on States of a State Machine
− If Case Statement Covers < 1/8 of All Possible

Cases
Binary Multiplexer Used in Quartus II:
− In All Other Cases

Synplicity Almost Always Uses Selector
− Why? It’s Up to the Vendor to Make the Choice

9
© 2004 Altera Corporation

© 2002© 2004 Altera Corporation
10

How Are Multiplexers
Implemented in
Synthesis?

How Are Multiplexers
Implemented in
Synthesis?

Multiplexer ImplementationMultiplexer Implementation
Binary Multiplexers
− 4:1 Multiplexer
− LPM_MUX

Selector Multiplexers

Priority Multiplexers

11
© 2004 Altera Corporation

Efficient 4:1 Mux: How It WorksEfficient 4:1 Mux: How It Works

C D
A B

S10

C D
A B

12
© 2004 Altera Corporation

S11

Uses Just

2 LEs

2:1 Mux Tree Forms N:1 Mux2:1 Mux Tree Forms N:1 Mux
N

13
© 2004 Altera Corporation

d6 d7d4 d5d2 d3d0 d1

N
2

N
4

N
8

1.00 N LEs

4:1 Mux Tree Forms N:1 Mux4:1 Mux Tree Forms N:1 Mux
N

d0 d2 d4 d6 d8 d10 d12 d14
d1 d3 d5 d7 d9 d11 d13 d15

N
4

N
16

Used by
LPM_MUX 0.66 N LEs

14
© 2004 Altera Corporation

Selector MuxSelector Mux

N
d0

s0
d1

s1
d2

s2
d3

s3
d4

s4
d5

s5
d6

s6
d7

s7

N
2

N
2

1
4

1
16

+ + …

0.66 N LEs

15
© 2004 Altera Corporation

Priority MuxPriority Mux
sel0 sel1 sel2 sel3 sel4 sel5 sel6

d7d6

d5

d4

d3

d2

d1

d0

1.00 N LEs

16
© 2004 Altera Corporation

Priority Mux: Quartus II-OptimizedPriority Mux: Quartus II-Optimized
sel0 sel2 sel4

sel5

sel6

17
© 2004 Altera Corporation

d7d6d4 d5

sel1

d3d2d0 d1

N
2

sel1
sel2

sel3
N
4

N
8

Same # LEs, but Better
Depth (Better Delay) 1.00 N LEs

© 2002© 2004 Altera Corporation
18

An Improved
Multiplexer
Implementation:
Linear Mux

An Improved
Multiplexer
Implementation:
Linear Mux

Linear Mux : How It Works…Linear Mux : How It Works…

0.50 N LEs
-25 %

Select
Odd/Even

d0 d1
Select

from paird2 d3
Select

from paird4 d5
Select

from paird6 d7
Select

from paird8 d9
Select

from pair

4-LUT

19
© 2004 Altera Corporation

Tree of LUTs is Not Necessarily
Optimal for Delay
Tree of LUTs is Not Necessarily
Optimal for Delay

4-LUT4-LUT

LUT

Slowest Input is
Critical Path

At Least 0.4ns
Routing Delay

This is Best Case;
Sometimes
Decomposition May
Require More Than
Two 4-LUTs

Slowest Input of
LUT is Critical Path

20
© 2004 Altera Corporation

Chained Logic Can Be FasterChained Logic Can Be Faster
Special Fast Routing Chains

on Stratix/Cyclone
(Cascade Chain)

LUT
LUT

LUT
Slowest Input
is Critical PathFastest Input

of LUT on
Critical Path

0.365ns

21
© 2004 Altera Corporation

© 2002© 2004 Altera Corporation
22

Implicit MultiplexingImplicit Multiplexing

Implicit MultiplexingImplicit Multiplexing
Take Advantage of Implicit Muxes in
Architecture
Registered Multiplexers Only
− Register adds extra functionality

Can Also Implement Control Signals:
− Synchronous Load
− Synchronous Reset
− Clock Enable

23
© 2004 Altera Corporation

The Stratix LEThe Stratix LE

enable

sload sclear

Lab-Wide Signals (i.e. Only 1 sload, 1 sclear, 2
enables per LAB)

24
© 2004 Altera Corporation

3:1 Mux in 1 LE3:1 Mux in 1 LE

d0 d1 d2

sload

sel

Register Needed
(for sload)Efficiency:

3:1 Mux / LE

25
© 2004 Altera Corporation

4:1 Mux in 1 LE4:1 Mux in 1 LE

d0 d1 d2

sload

Register Needed
(for sload / sclear)

sel

0 sclear

0

One Input is 0

Efficiency:
4:1 Mux / LE

26
© 2004 Altera Corporation

27
© 2004 Altera Corporation

Clock Enable Is Also a Mux - 5:1
Mux in 1 LE!
Clock Enable Is Also a Mux - 5:1
Mux in 1 LE!

d0 d1 d2

sload
sel

0 sclear

enable

PROCESS (clk, reset)
IF reset THEN
z <= 0;

ELSIF rising_edge(clk) THEN
IF enable THEN

IF sclear THEN
z <= 0;

ELSIF sload THEN
z <= d2;

ELSE
IF sel THEN
z <= d1;

ELSE z <= d0;
END IF;

END IF;
END IF;

END IF;

New for
QII 4.0

One Input is 0
Feed Back Value When
Enable = 0

© 2002© 2004 Altera Corporation
28

Taking Advantage of
Implicit Multiplexing
Taking Advantage of
Implicit Multiplexing

Can Build Large Muxes Using 3:1sCan Build Large Muxes Using 3:1s

29
© 2004 Altera Corporation

3:1 sload

d0 d1 d2

3:1 sload

d3 d4 d5

3:1 sload

d6 d7 d8

3:1 sload

d9 d10 d11

4:1

6 LEs

Making the Most of Implicit
Muxing
Making the Most of Implicit
Muxing

Implicit Muxing Relies on Register
Functionality
Good to Use When Output of Mux is
Registered
What If Mux Output Is Asynchronous?

30
© 2004 Altera Corporation

Can Add Artificial Registers to a
Design
Can Add Artificial Registers to a
Design

Logic

Logic Logic

Logic

LogicLogic

Negative-
edge
triggered

31
© 2004 Altera Corporation

Registers Come for Free With Logic
Registers Allow Additional Sload/Sclr Functionality

Summary – BackgroundSummary – Background
Where do Multiplexers come from?
− CASE Generally Gives Selector or Binary Muxes
− IF THEN ELSE Generally Gives Priority Muxes

How Often Do Multiplexers Occur?
− 26% of LEs on Average

How Are N:1 Multiplexers Implemented in
Quartus II (in 4-LUT Architectures)?
− Binary / Selector (0.66 N LEs)
− Priority (1.00 N LEs)
− Linear Mux (0.50 N LEs) NEW!

32
© 2004 Altera Corporation

Summary – BackgroundSummary – Background
Implicit Multiplexing
− Extra functionality with Registers
− Enable, Sync-Load, Sync-Clear

Taking Advantage of Implicit Multiplexing
− General 3:1 Mux in 1 LE!
− Potential for 5:1 Mux in 1 LE!
− Can Add Extra Registers to Async Logic in Some

Cases

33
© 2004 Altera Corporation

AgendaAgenda

Background/Theoretical

Design Guidelines

Quartus II Project to Improve MUX Synthesis

34
© 2004 Altera Corporation

Agenda - Design GuidelinesAgenda - Design Guidelines
Common Multiplexer Pitfalls:

− One-Hot Controls
− The ‘Others’
− Degenerate Muxes

35
© 2004 Altera Corporation

© 2002© 2004 Altera Corporation
36

Common Multiplexer
Pitfalls:
One-Hot Controls

Common Multiplexer
Pitfalls:
One-Hot Controls

One Hot Encoding: Common
Mistake
One Hot Encoding: Common
Mistake

37
© 2004 Altera Corporation

CASE sel IS
WHEN ”0001” => z <= a;
WHEN ”0010” => z <= b;
WHEN ”0100” => z <= c;
WHEN ”1000” => z <= d;
WHEN OTHERS => z <= 0;
END CASE;

Synthesis Can’t Know that
This Is Intended to be a

One-Hot Select

Quartus II Will Build a 16:1
Binary Multiplexer:

8-10 LEs

One Hot Encoding: SolutionOne Hot Encoding: Solution

Z <= a WHEN sel[0]=‘1’ ELSE ”ZZZZ”;
Z <= b WHEN sel[1]=‘1’ ELSE ”ZZZZ”;
Z <= c WHEN sel[2]=‘1’ ELSE ”ZZZZ”;
Z <= d WHEN sel[3]=‘1’ ELSE ”ZZZZ”;

Synthesis Assumes
Tri-States are One-Hot

38
© 2004 Altera Corporation

Quartus II Will Build a 4
Input Selector Multiplexer:

3 LEs

© 2002© 2004 Altera Corporation
39

Common Multiplexer
Pitfalls:
The “Others”

Common Multiplexer
Pitfalls:
The “Others”

Efficient 4:1 MultiplexerEfficient 4:1 Multiplexer

40
© 2004 Altera Corporation

z

sel

4:1

dcba

CASE sel IS
WHEN ”00” => z <= a;
WHEN ”01” => z <= b;
WHEN ”10” => z <= c;
WHEN ”11” => z <= d;
END CASE;

No OTHERS, or Default, Case.
HDL Rules Say You Should
Always Specify a Default. 2 LEs

41
© 2004 Altera Corporation

What Should OTHERS Be Set To?What Should OTHERS Be Set To?

Should Be the Correct Way to Make OTHERS Assignment.
Synthesis Tool Should Choose the Optimal Assignment

for “Don’t Care” Value; for 4.1.

OTHERS: # LEs

Z <= “0000” 3

Z <= “----” 2
Z <= d 2

Z <= c 5

Z <= NULL 3

Z <= Z 3

CASE sel IS
WHEN ”0001” => z <= a;
WHEN ”0010” => z <= b;
WHEN ”0100” => z <= c;
WHEN ”1000” => z <= d;
WHEN OTHERS => z <= ????
END CASE;

Quartus II 4.1 Results
(Planned)

© 2002© 2004 Altera Corporation
42

Common Multiplexer
Pitfalls:
Degenerate Muxes

Common Multiplexer
Pitfalls:
Degenerate Muxes

Problem: Degenerate 8:1 MuxProblem: Degenerate 8:1 Mux

43
© 2004 Altera Corporation

Sel[1:0]

“00xx”

“01xx”

“11xx”

“10xx”

a

z

b c d

Binary-mux

CASE sel[3:0] IS
WHEN “0101” =>

z <= a;
WHEN “0111” =>

z <= b;
WHEN “1010” =>

z <= c;
WHEN OTHERS =>

z <= d;
END CASE;

Sel[3:2]

5 LEs!

44
© 2004 Altera Corporation

Sel[3:0]

Solution: Recode Degenerate
Muxes
Solution: Recode Degenerate
Muxes

z

b da c

4:1

Recoder
CASE sel[3:0] IS
WHEN “0101” =>

z_sel <= “00”;
WHEN “0111” =>

z_sel <= “01”;
WHEN “1010” =>

z_sel <= “10”;
WHEN OTHERS =>

z_sel <= “11”;
END CASE;

Recoder

Recoder (Can Be
Shared): 2 LEs 2 LEs

Synthesis Does Not Extract
Defaults Well
Synthesis Does Not Extract
Defaults Well

Possible Solutions:
− Flatten Multiplexer (Use One CASE Statement!)
− RecodE (Use 4:1 CASE Statement Method)
− Restructure Code So to Reduce Default Cases
− Question Whether Defaults Are Don’t Cares

Promote Last ELSIF to ELSE If No Other Cases Will
Happen

45
© 2004 Altera Corporation

Summary - Design GuidelinesSummary - Design Guidelines
Encourage Muxes to be Fully Populated, Binary
Controlled
− May Require Recoding of Control Lines
− Avoid Degenerate Muxes

Be Careful of Special Cases
− One Hot Controls
− Implicit Defaults

46
© 2004 Altera Corporation

AgendaAgenda

Background/Theoretical

Design Guidelines

Quartus II Project to Improve MUX Synthesis

47
© 2004 Altera Corporation

© 2002© 2004 Altera Corporation
48

Quartus II MUX
Synthesis
Improvements

Quartus II MUX
Synthesis
Improvements

Quartus II Synthesis ProjectQuartus II Synthesis Project
Performs Recoding for Bus of Muxes
Automatically
− Searches for Buses of Mux Trees
− Estimates Cost of Recoding
− Recodes If More Efficient (in Terms of Area)
− Exploits Duplicates & Constants In Mux Inputs
− Uses Most Efficient Multiplexer Implementation

Hidden INI and QSF Variable in 4.0, Feature
Release Planned for 4.1
− For Stratix only in 4.0

49
© 2004 Altera Corporation

50
© 2004 Altera Corporation

Enabling MUX Optimization in 4.0Enabling MUX Optimization in 4.0
INI Variable:
mast_extract_and_optimise_bus_muxes=on

QSF Variable:
EXTRACT_AND_OPTIMIZE_BUS_MUXES

Example Tcl/QPF Entry:
− Enables Option for All Nodes in Entity mux_bus_alpha

of Type mux_bus Instantiated in test_controller, the
Top-Level Entity:

set_instance_assignment -name
EXTRACT_AND_OPTIMIZE_BUS_MUXES ON -to
"mux_bus:mux_bus_alpha" -entity
test_controller

Results So Far… (Quartus II 4.0)Results So Far… (Quartus II 4.0)

Percentage Improvement in Area

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

tn
_o

bj
_t

op
_b

fs
b

ps
pl

m

aq
ui

la
_c

or
e

ad
c_

fir
1

al
t_

bd
ti2

0

al
t_

bd
ti8

0

al
t_

ni
os

_s
td

_d
eb

ug
32

_v

bi
g_

ch
ip

ch
es

s

hp
vs

b

po
s_

ph
y_

to
p

vi
de

o_
sc

an
_c

a

al
t_

oc
76

8_
ss

rx

rij
nd

ae
l_

ite
r

bi
g_

ch
ip

_t
op

al
t_

po
sp

hy
4_

tx

co
re

_s
tri

p

sa
si

c_
co

re

le
ns

in
gr

es
s_

to
p

id
_t

op

m
ux

_f
pg

a

ia
p

sb
d2

_t
op

xb
rg

fa
br

_c
tl8

m
bc

b

m
pa

_p
ci

ul
tra

_i
de

ve
ql

to
p

ib
xp

t

Average = 1.5% Improvement

51
© 2004 Altera Corporation

Fmax Effect

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

Results So Far… (Quartus II 4.0)Results So Far… (Quartus II 4.0)

Average = 1.9% Reduction

52
© 2004 Altera Corporation

General SummaryGeneral Summary
Where Multiplexers Come From (CASE, IF)
How Often Muxes Occur: Average 26% of LEs
How N:1 Multiplexers Are Implemented in
Quartus II (in 4-LUT Architectures)
Guidelines: Encourage Muxes to be Fully
Populated, Binary Controlled (Recode if Needed)
Buses of Multiplexers Can Have Big Effect
Try the INI for Improved MUX Optimization in
Quartus II

53
© 2004 Altera Corporation

POP QuizPOP Quiz
Where can we set enabling MUX
OPTIMIZATION in QuartusII4.1?

1. Assignment>>Settings>>Analysis&Synthesis
settings>>Restructure Multiplexers
2. Assignment>>Assignment Editor>>Logic
options>> Restructure Multiplexers
3. Above all

54
© 2004 Altera Corporation

	Advanced Synthesis: Muliplexer Optimization
	Objectives
	Lessons Learned
	How Often Do Multiplexers Occur? Why Mux Optimization?
	Agenda
	Agenda - Background/Theoretical
	Where Do Multiplexers Come From?
	Types of Multiplexers
	How Are CASE Statements Synthesized?
	How Are Multiplexers Implemented in Synthesis?
	Multiplexer Implementation
	Efficient 4:1 Mux: How It Works
	2:1 Mux Tree Forms N:1 Mux
	4:1 Mux Tree Forms N:1 Mux
	Selector Mux
	Priority Mux
	Priority Mux: Quartus II-Optimized
	An Improved Multiplexer Implementation:Linear Mux
	Linear Mux : How It Works…
	Tree of LUTs is Not Necessarily Optimal for Delay
	Chained Logic Can Be Faster
	Implicit Multiplexing
	Implicit Multiplexing
	The Stratix LE
	3:1 Mux in 1 LE
	4:1 Mux in 1 LE
	Clock Enable Is Also a Mux - 5:1 Mux in 1 LE!
	Taking Advantage of Implicit Multiplexing
	Can Build Large Muxes Using 3:1s
	Making the Most of Implicit Muxing
	Can Add Artificial Registers to a Design
	Summary – Background
	Summary – Background
	Agenda
	Agenda - Design Guidelines
	Common Multiplexer Pitfalls:One-Hot Controls
	One Hot Encoding: Common Mistake
	One Hot Encoding: Solution
	Common Multiplexer Pitfalls:The “Others”
	Efficient 4:1 Multiplexer
	What Should OTHERS Be Set To?
	Common Multiplexer Pitfalls:Degenerate Muxes
	Problem: Degenerate 8:1 Mux
	Solution: Recode Degenerate Muxes
	Synthesis Does Not Extract Defaults Well
	Summary - Design Guidelines
	Agenda
	Quartus II MUX Synthesis Improvements
	Quartus II Synthesis Project
	Enabling MUX Optimization in 4.0
	Results So Far… (Quartus II 4.0)
	Results So Far… (Quartus II 4.0)
	General Summary
	POP Quiz

