

Simply Better Results...

Secret Synthesis Recipes for Performance and Cost

SOPC World November, 2004

Agenda

Company Introduction

- Recipes for achieving high performance
- Recipes for area (cost) saving
- Physical Synthesis
- DSP Synthesis

Synplicity, Inc.

• A Global EDA company founded in 1994

Unique company philosophy

- Best results don't have to come from hard to use tools
- Flexible and easy to work with company
- Dedicated to providing the best technical support
- The Market Leader in FPGA Synthesis

Innovative Solutions For FPGA Designers

- Physical synthesis
- Debug
- DSP Synthesis

Simply Better Results®

Agenda

- Company Introduction
- Recipes for achieving high performance
- Recipes for area (cost) saving
- Physical Synthesis
- DSP Synthesis

Performance Tips

Out of the box synthesis yields good results

• Even when running with default settings, the synthesis algorithms are very good at making FPGA specific decisions

Applying real constraints will boost performance

Constraints define critical areas for the synthesis algorithms

Setup Tips

• Setting up the project correctly can impact performance and area greatly. Some tips to follow.

Controlling Implementation Tips

 After set-up, what can the user do to change the implementation to reduce Area further and increase performance.

Setup Tip #1 The Optimum Constraint

- Create the right amount of negative slack for constraining Synthesis and Place & Route
 - Best to exactly constrain Synthesis
 - Ensure that the most critical path is a "real" path
 - Ensure that Synplify doesn't have positive slack on the critical path

Worst slack in d	esign: 0.107						
Starting Clock	Requested Frequency	Estimated Frequency	Requested Period	Estimated Period	Slack	Clock Type	Clock Group
clk	96.2 MHz	97.2 MHz	10.400	10.293	0.107	eclared	gl
P			Pos	sitive S	Slack -	bad	

- If Synplify indicates less than ~10% of cycle time negative slack, some optimizations may not kick in
- Performance will likely degrade if over-constrained by over 15%

The Optimum Constraint for Best Results

Simply Better Results

Setup Tip #2 – Clock Constraints

Enter all timing constraints

- Define real individual clock constraints
- If the clocks are unrelated, always put them into different clock groups
- Using the global frequency field can harm results
 - Only useful for single clock, small benchmarks & demonstrations
- Always specify the correct clock groupings

	Enabled	Clock	Frequency (MHz)	Period (ns)	Clock Group	Rise At (ns)	Fall At (ns)	Duty Cycle (%)	Route (ns)	Virtual Clock	
1		clock1	285.714	3.5	group1			50	1.2		
2		clock2	232.558	4.3	group2			50	0.5		
3	V	clock3	178.571	5.6	group3			50	0	Π	
4											
	Clocks 🖉	Clock to Clock 🖌 Inputs/Outputs	A Registers	s 🔏 Multi-	Cycle Paths 🔏 F	alse Paths 🌶	(Max Delay	Paths 🖌 Att	ributes 🖌	Compile	Points 🖌 Other 🖊

More Setup Tips

I/O Timing

- When I/O timing is on
 - The critical path will likely be through an I/O
 - Other logic may therefore not be optimal
- If I/O timing is not required turn it off
 - Un-selecting the 'Use clock period for unconstrained IO' in the implementation options'
 - Off by default for new projects
- Be sure to specify false and multi-cycle paths
 - Enables Synplify to focus on real critical paths
- Add Clearbox to the Synplify project

Tip #3 – Pipelining & Retiming

Significant Performance Increase

- Up to 50% better timing
- Extremely design dependant

Pipelining (a la Synplicity)

- Applies to arithmetic datapath
 - Multipliers, Adders, ROMs
- Moves existing registers to balance delays
- Timing driven
- On by default

Retiming (a la Synplicity)

- Applies to the entire design
- Moves existing registers to balance delays
- Timing driven
- Off by default

Tip #4 – State Machines

FSM Compiler

- ON by default
- Extracts and optimizes FSMs
- State encoding based on number of states
 - 2-4: sequential / 5-40: onehot / more than 40: gray

FSM Explorer

- OFF by default
- Timing-driven state encoding

User can force state encoding

- syn_encoding attribute on modules or instances
 - sequential, onehot, gray and even user defined!
- Encoding could be viewed as a retiming across the FSM
 - Output decoding logic vs FSM logic

Tip #5 – Resource Allocation

- Macro block is not always the fastest implementation
 - A well pipelined LUT mult is faster than a combination of blockmults
- Use selected attributes to control resource usage
- Multiplier
 - syn_multstyle {logic | lpm_mult}
- RAM
 - syn_ramstyle {registers | M512 | M4K | M-RAM | block_ram | no_rw_check}
- ROM
 - syn_romstyle {logic | lpm | block_rom}
- Shift Register
 - syn_srlstyle {registers | altshift_tap}

Tip #6 – Optimization Control

Power users can control synthesis optimizations

syn_keep (in source code)

- Preserves a RTL net throughout synthesis
- Prevents LUT packing, replication, removal, etc
- Allows –thru constraints

• syn_preserve (in source code)

- Disables sequential optimizations on FFs
- Prevents removal, merging, inverter push-thru, FSM extraction

syn_replicate (in constraint file)

Prevents replication of FFs

syn_maxfan (in constraint file)

- Hard fanout limit on module or instances
- Triggers replication and buffering

Details and examples in on-line documentation

Formal Verification Tool Support

Enable Verification Mode

Option	Value	^
Retiming		-
Verification Mode	N	٦_
Fix gated clocks	0	
Placement based physical optimization		

VIF (Verification Interface File)

- Automatically generated during synthesis
- Tool independent ASCII file
- Contains information needed by FV/LEC tools
- Synplify Pro feature only
- Cadence's Conformal and Prover's ECheck supported
- Script to convert "VIF" to LEC compatible file(s) available

Agenda

- Company Introduction
- Recipes for achieving high performance
- Recipes for area (cost) saving
- Physical Synthesis
- DSP Synthesis

Synthesis For Area (Cost) Saving

Synplify is truly timing driven

- If a path is non-critical, Synplify will try to save area while maintaining constraints
- Only when the path requires performance will Synplify start to increase area
- Performance-upon-demand

Synthesis For Area

Turn resource sharing ON

Use resource allocation attributes

- syn_ramstyle
- syn_romstyle
- syn_multstyle
- syn_srlstyle

Explore FSM encodings

- FSM Explorer
- Use syn_encoding

Agenda

- Company Introduction
- Recipes for achieving high performance
- Recipes for area (cost) saving
- Physical Synthesis
- DSP Synthesis

Route Delay Must be Considered During Synthesis

Delay inside logic block is – 25% of total

Routing between logic blocks is ~ 75% of total

Amplify FPGA - Physical Synthesis

Accurate Timing Correlation is a Must

Estimates must be accurate to ensure the tool is working on the right paths

- 90% within 10% of actual timing
- 67% within
 5% of actual timing
- 145 designs used

Graphical Island Timing Viewer

- Helps users create a good floor plan (physical constraints)
- Easily identify physically connected paths with negative slack
- Reduces iterations of synthesis
- New in 8.0

Island Viewer - E:\DAC20	104D	EMOFINAL\leon\nnc_tons					_ [#] X
lands/Paths Controls	-Islar	nds/Paths Summary	[1		[=	
	Is	and/Path name	Slack	Clock domain	Path start point(source)	Path end point(destin	nation) End doma
	P	e <mark>.2.</mark> 0	-1.470000	clk [rising] on pin clk	procU.iuU.de.inst[22] / regout	procU.cU.cachememl	J.synpl.idata3 clk [rising]
		path_1	-1.470000	clk [rising] on pin clk	proc0.iu0.de.inst[22] / regout	proc0.c0.cachemem(J.synpl.idata3 clk [rising]
			-1.397000	clk [rising] on pin clk	proc0.iu0.de.inst[22] / regout	proc0.c0.cachemem().synpl.idata3 clk [rising]
			-1.384000	clk [rising] on pin clk	proc0.iu0.de.inst[21] / regout	proc0.c0.cachemem().synpl.idata3 clk [rising]
			-1.370000	clk [rising] on pin clk	proc0.iu0.de.inst[22] / regout	proc0.c0.cachemem().synpl.idata3 clk [rising]
			-1.367000	clk [rising] on pin clk	proc0.iu0.de.inst[22] / regout	proc0.c0.cachemem().synpl.idata3 clk [rising]
		🔛 path_6	-1.352000	clk [rising] on pin clk	proc0.iu0.de.inst[22] / regout	proc0.c0.cachemem().synpl.idata3 clk [rising] 💌
		Cross Probe					Details
ilobal Range	*	Islands/Paths Details					
5		Path information :	for path r	number 1:			▲ _
roup Range		Requested Period	:		11.000		
- lav Pathe / Ieland	- Setup time:				0.170		
20 -		- Required cime.			10.830		
		- Propagation ti	me:		12.301		
Generate Report		= Slack :			-1.470		
		Number of logic	level(s):		15		
		Starting point:			proc0.iu0.de.inst[22] / regou	t	
		Ending point:			proc0.c0.cachemem0.sympl.idat	a3	
		The start point	is clocke	d by	clk [rising] on pin clk		
		The end point	is clocke	d by	clk [rising] on pin clk0		
		Instance / Net					Pin
		Name				Type	Name
		proc0.iu0.de.inst[22	1			armstrong lcell ff	regout
		inst[22]				Net	-
		proc0.iu0.decode_sta	ge.unl_de	.inst_17_3_0_a2		armstrong_lcell_comb	datac
		proc0.iu0.decode_sta	ge.unl_de	.inst_17_3_0_a2		armstrong_lcell_comb	combout
		nroc0 ju0 unl de cnt	3 0 0			armstrong lcell comb	datad
		proc0.iu0.unl_de.cnt	_3_c_0			armstrong_lcell_comb	combout 1
		cnt_3_c_0_combout				Net	- 🗾 🗖
		•					
l							

Visual Feedback For Analysis & Design Planning

Physical Analyst

Physical analysis

- Find, filter, expand commands
- Cross-probing to source code, RTL view and Technology view

Improved timing analysis

- Critical path display
- Cross-probing from timing report

Congestion analysis

- Global route estimator
- Congestion maps

• New in 8.0

Objects								
	Vis Sel Sel?Fil?							
Instances								
Signal Pins	Power Pins					╋╘		
Obstruction	ns							
Nets								
Prune								
Phys Inst								
Regions						┥═┝┥┝┝		
Edit Obs							التاكار	
Place Obs								
Cappet Occ								
D D								
KOWS/Sites	—							
Power Nets								
			i.					

Agenda

- Company Introduction
- Recipes for achieving high performance
- Recipes for area (cost) saving
- Physical Synthesis
- DSP Synthesis

DSP Synthesis Automation

Algorithm to RTL Implementation for FPGAs

DSP Designers & HDL Coders are Different

Algorithm tools (and designers) have no idea of implementation issues RTL is written by hand (redundant & error prone)

> Synplify DSP addresses this by raising the level of abstraction in which an engineer operates (Algorithm to RTL)

DSP Synthesis using Synplify DSP

Front-End for

- Synplify Pro
- Certify

Optimized DSP algorithms for hardware

- Two Components
 - Blockset
 - Toolbox

The Synplify DSP Blockset

Blockset advantages

- Simulink Fixed Point discrete data type
- Simulink Multi Rate discrete time management
- Architecture details hidden
- Latency free design

What's this all mean?

- High productivity
- Days instead of weeks

The Synplify DSP Toolbox

Toolbox advantages

- Optimization technology
- Decouples algorithm from architecture
- Technology independent
- Can be used by the DSP Guru

Synplify DSP			
elp			
Open Model	Bun Syl	nplify® DSP	
New Impl	odel: S:\MATLAB\work\TUTO	RIAL\tutorial_r13.mdl	
Impl Options	r13_BASE r13_EDLDING		
View Log	r13_RETIMING		
Frequency (MHz)			
100 🗄			
Folding			
Retiming			
5			
Multi-Channelizing			

The Value of Synplify DSP

Large productivity gain

- Decouples algorithm from architecture
- Area-Speed tradeoffs
- Multi-channel system from single-channel spec (patent)

Single source with QoR

- DSP optimization gives faster and smaller designs
- Technology Independence
- Leverages familiar design environment
 - Simulink No learning curve
 - Integrated ToolBox

The market leader in FPGA synthesis

Synthesis impacts your customers bottom line

Innovation leader in FPGA design

- First with physical synthesis
- First with RTL debug
- First with DSP synthesis

Excellent working relationship with Altera

- New device support upon availability
- Industry-leading post-sales technical support

