
Increase System Performance & Efficiency Using Distributed Direct Memory Access (DMA)

© 2004 Altera Corporation

Block Data Transfer Becomes a Challenge in a Complex System

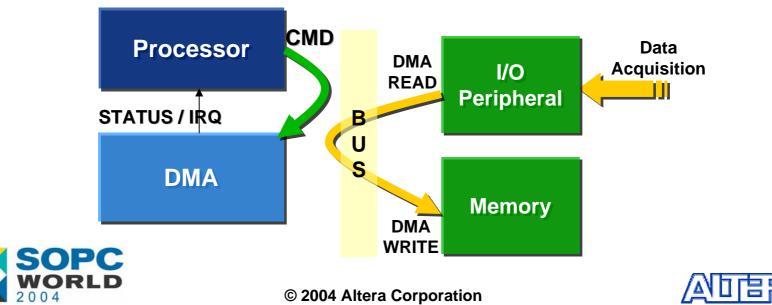
- Common Problems with Block Data Transfer Efficiency
 - Meeting Individual Bandwidth Requirement
 - Traffic Priority & Overall Performance
 - Hardware Design Complexity & Maintainability

Solutions to Improve Block Data Transfer Efficiency

Solutions	Problems/Issues
State Machine & Multiplexer	Difficult to Manage the Source CodeDifficult to Analyze System Efficiency
Direct Wire to Dedicated Memories	Cost of Memory DevicesCost of Logic & Routings
Using Processors to Move Data	Longer Latencies
Direct Memory Access	May Marginally Increase Hardware

Agenda

- Direct Memory Access (DMA)
- Switch Fabric & Slave-Side Arbitration
- Altera's Development Tools & IP Supporting DMA
- Examples
 - VGA Controller
 - Ethernet Controller
 - CPRI

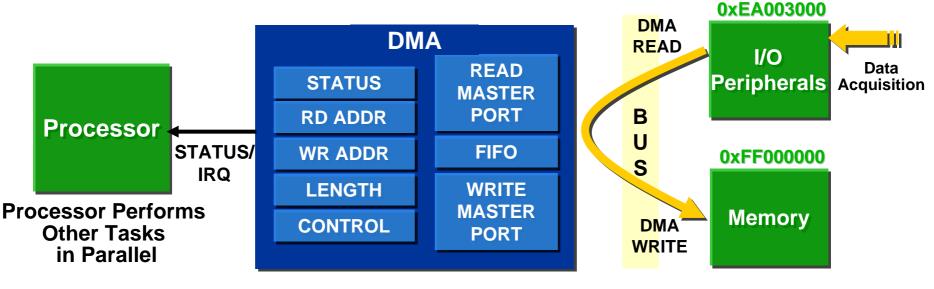

What is DMA?

© 2004 Altera Corporation

DMA—Direct Memory Access

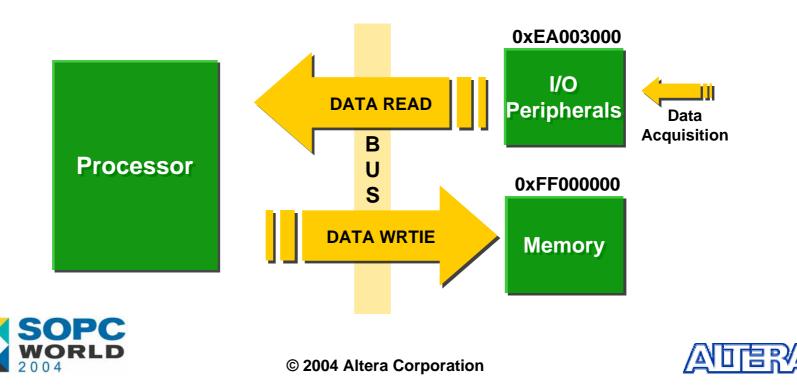
- Allows a Bounded Number or Sequential Data Transfer Between Regions in the Address Space
 - Typically Between Memories & Peripherals
 - Memory to Memory
 - Peripheral to Peripheral
 - Memory to Peripheral
 - Peripheral to Memory
- Used in Processor & Bus Architecture

Benefit of Using DMA in FPGAs


- Simplifies the Hardware Design
 - Eliminates Low-Level Control Logic for Data-Movements
 - Provides Standardized Interface for Peripherals
 - Enables Re-Useable Hardware Blocks
 - Altera's DMA block
- Software Engineer-Friendly
 - Abstracts the Hardware
 - All Data Movement Controlled by Software
 - Only Design High-Level Drivers Once
 - Never if Using Altera's DMA Block
- Increases System Performance
 - Eliminates Processor Bottleneck in Data Movement
 - Offloads Processors to Perform Other Tasks in Parallel

Typical DMA Transaction

- Step 1: CPU Initializes Transfer Command to the DMA Controller, Then Enables the DMA
 - Assigns RD & WR Starting Address, Transfer Length, Etc.
- Step 2: DMA Begins Data Transfer without Processor Intervention
- Step 3: DMA Completes Data Transfer & Sets Completion Status (or IRQ) to the Processor



Same Transaction without DMA

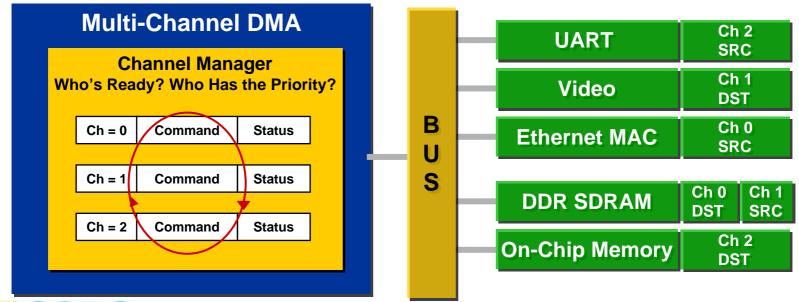
- The Processor Must Execute a Time-Consuming Software Routine
 - Need Variables to Maintain Read & Write Data Counts
 - Need Pointers for Read & Write Address Increments
 - Need Data Structure for Temporary Buffering

Design with DMA vs. without DMA

•Benchmark Results for

16-bit Cyclic Redundancy Check Algorithm (CRC16-CCITT)

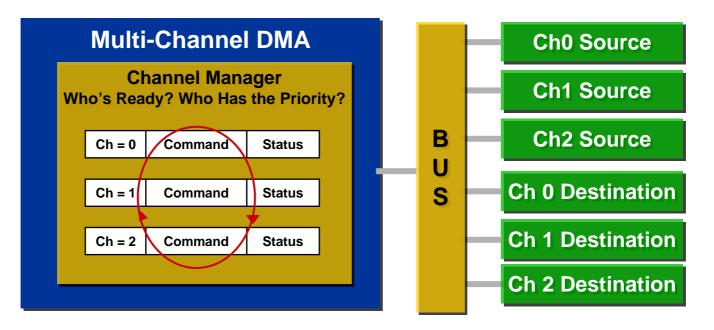
	Design With DMA	Design Without DMA		
Aspect	DMA-Enabled Smart Peripheral (Clock Cycles)	Bit-by-Bit Software Algorithm (Clock Cycles)		
8 Byte Message	243	2,838		
512 Byte Message	582	181,753		
1KB Message	922	363,243		
64KB Message	43,925	23,264,648		
Hardware Resources Utilized	~975 Additional Logic Elements	Baseline		


Other DMA Enhancements

- Multi-Channel DMA Controllers
- Event- or Time-Triggered DMA
- Two-Dimensional DMA Transfer
- Scatter-Gather DMA Using Descriptors

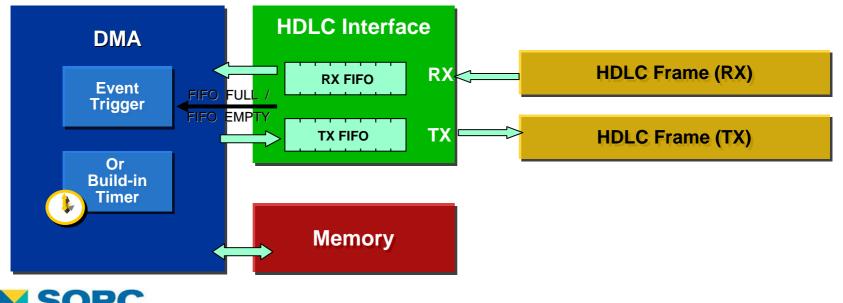
Multi-Channel DMA Controllers

- Multiple Peripherals Can Time-Share DMA Controller & Bus Utilization
- In the Following Example:
 - DMA Can Serve All 3 Devices & Meet Bandwidth Requirement
 - Ethernet Can Be Allocated with Higher Priority while UART is Filling the FIFO & Video Controller is Filling the Frame Buffer



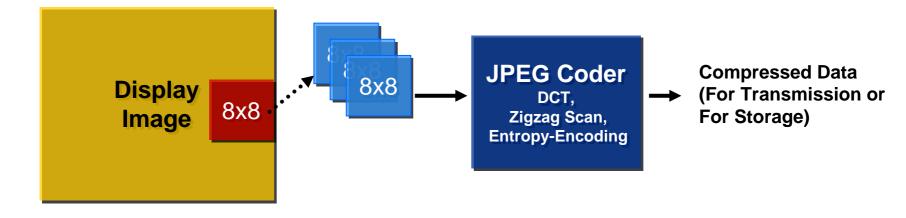
Multi-Channel DMA Controllers

- Each Channel is Granted to a Portion of Service Time
- A Channel Manager Arbitrates the Service by Monitoring:
 - Transfer Priority, Data Readiness & Memory Type
 - Available with Most High-End Processors & Digital Signal Processors



Event- or Time-Triggered DMA

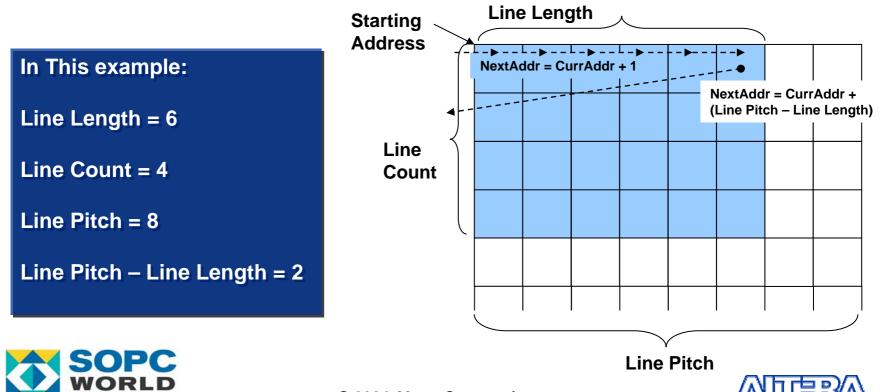
- Can be Used in Conjunction with Data Acquisition Buffering, Packet or Frame Processing, Time-Based Counter, etc.
- Events Can Come From Multiple Sources or a "Default"
- Example: High-Level Data Link Control Interface



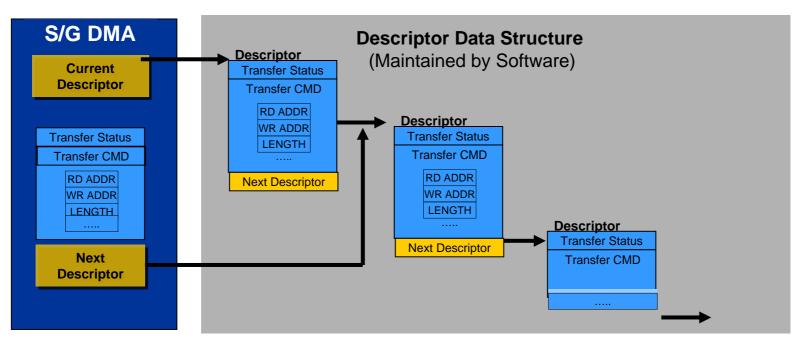
Two-Dimensional DMA Transfer

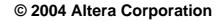
Example: JPEG Still Color Image Coding

- All JPEG DCT-Based Coders Process 8x8
 Blocks of Component at a Time
- Need to Transfer the 8x8 Blocks for Processing



Two-Dimensional DMA Transfer

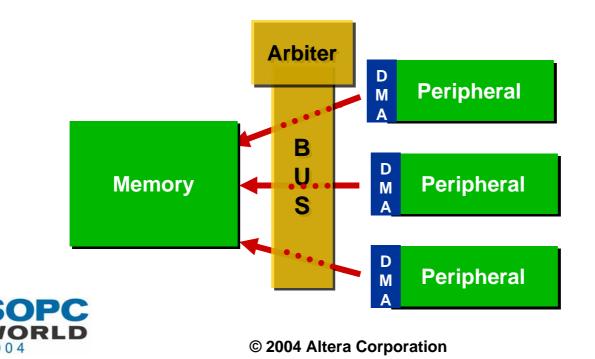

- Line Length, Line Count & Line Pitch Can Be Embedded in the Transfer Command
- Address Will Be Incremented Based on the 2D Calculation
 - If "End-of-Line" : Address = Address + (Line Pitch Line Length)
 - Otherwise: Address = Address + 1
- Transfer Can Mix 2D-to-2D, 2D-to-1D, 1D-to-2D (Source-to-Destination)


© 2004 Altera Corporation

Scatter-Gather DMA Using Descriptors

- DMA Automatically Executes a Series of Operations Based on the Link List of Descriptors Data Structure
- Reduces Initialization Overhead for Individual Transfer Command
- EX: 3G Channel Element Card, Base Station

Combine Various DMA Enhancements


- To Achieve the Best Performance, Combine Various DMA Enhancements:
 - Basic DMA Controllers
 - Multi-Channel DMA
 - Event- or Time-Triggered DMA
 - Two-Dimensional DMA
 - Scatter-Gather DMA Using Descriptors

Introduction to Distributed DMA

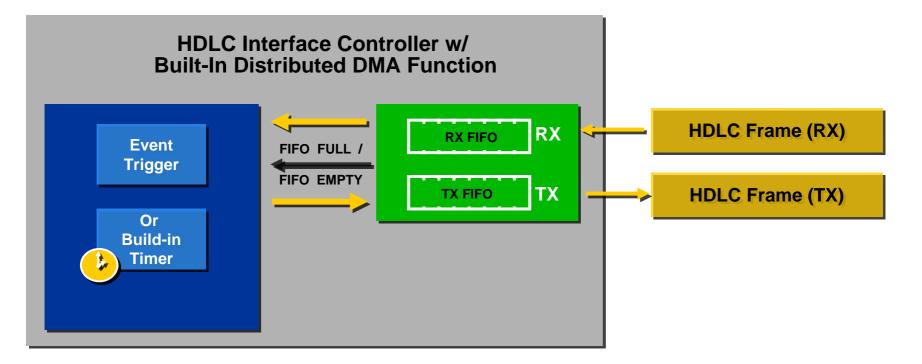
- Distributed DMA Definition:
 - The Integration of DMA Controllers Into Peripherals; or
 - The Distribution of DMA Controllers Across The Bus Hierarchy (non-centralized)

Benefits of Distributed DMA

Simplifies the Hardware Design

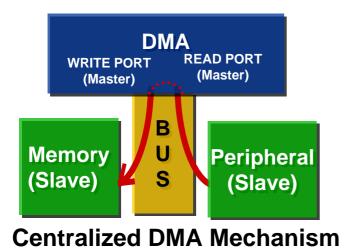
- Eliminates Low-Level Control Logic for Data-Movements
- Provides Standardized Interface for Peripherals
- Enables Re-Useable Hardware Blocks
- Software Engineer-Friendly
 - Abstracts the Hardware
 - All Data Movement Controlled by Software
 - Only Design High-Level Drivers Once
 - Never if Using Altera's DMA Block
- Increases System Performance
 - Eliminates Processor Bottleneck in Data Movement
 - Offloads Processors to Perform Other Tasks in Parallel

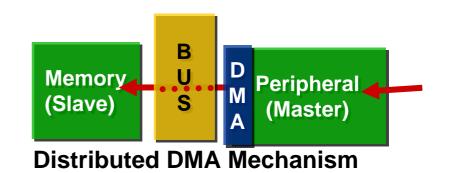
Note: DMA Benefits in Blue Enabled by Distributed DMA



Distributed DMA Example

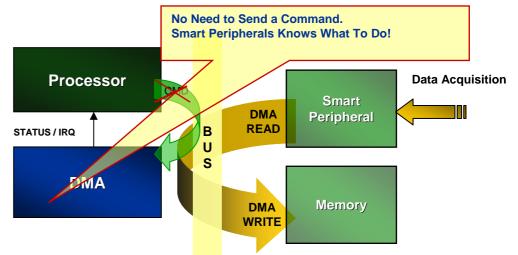
Combining the DMA Controller & HDLC Interface Will Become a Distributed DMA Topology


Reduces Latencies



Centralized DMA vs. Distributed DMA

Aspect	Centralized DMA	Distributed DMA
Hardware Resources	Multiple Devices Can Share the Same DMA	Overall System May Consume More Logic
Bus Loading	Double Bus Loading	Single Bus Loading
Master & Slave Consideration	DMA Controller Has 2 Master Ports: Read & Write	Peripheral Must Have Master Capability



Smart Peripherals with Distributed DMA

- Smart Peripherals Are Capable of Initiating DMA Data Transactions to & from Memory
- Built-In Intelligence
 - Default Event Trigger
 - Default Source or Destination Address
 - Default Data Count & Transfer Type

Advanced Bus Interconnect Architectures

© 2004 Altera Corporation

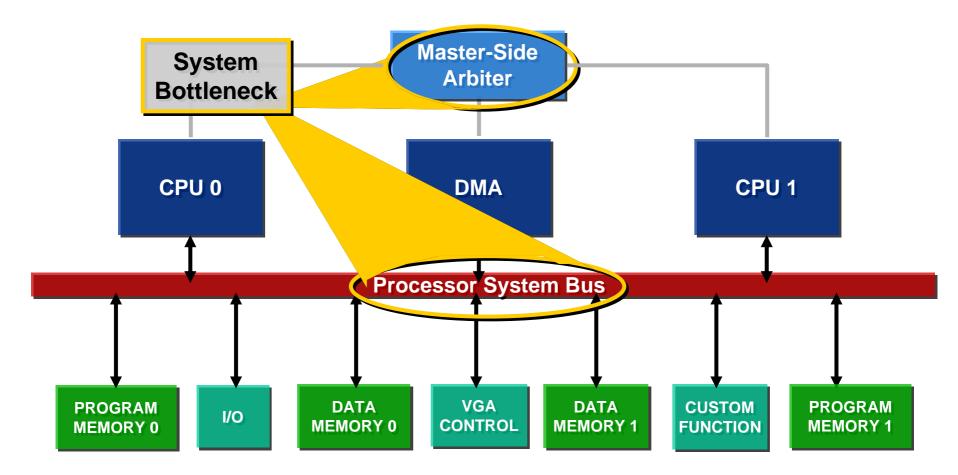
Bus Architecture

Bus

- A Shared Communication Link that Connects I/O Pins to Memory & Processor Subsystems
- Advantages of Applying Bus Architecture
 - Low Cost: Set of Wires is Shared in Multiple Ways
 - Versatility: Well-Defined Interconnection Scheme Allows Devices to be Added or Removed Easily
- Caveat of Applying Bus Architecture
 - Without Proper Design, a Bus Architecture May:
 - Create Data Traffic Bottlenecks
 - Limit Maximum I/O Throughput

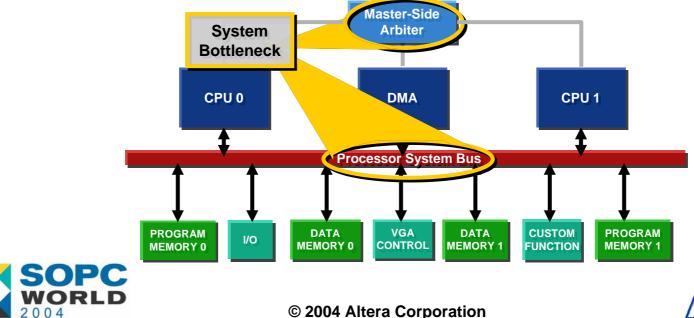
Bus Design Decisions

- Bus Width & Data Width
- Number of Masters & Arbitration Scheme
- Type of Devices Connected to the Bus
 - Processors & Co-Processors
 - Memories & Buffers
 - High-Speed I/O Pins
 - Low-Speed I/O Pins
- Bus Hierarchy
- Performance & Cost

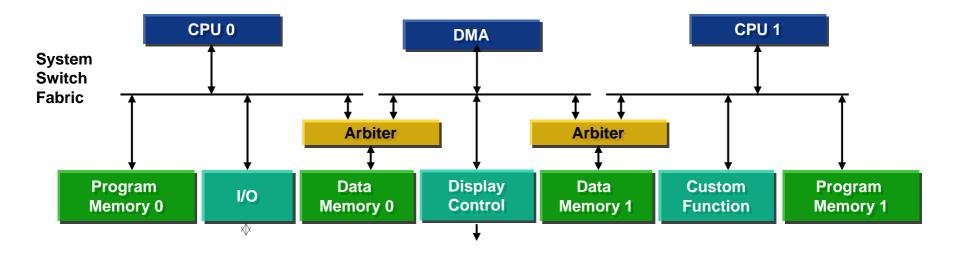

Basic Components of Bus

- Master
 - Initiates a Read or Write Transaction
 - Example: Processors
- Slave
 - Responds to a Transaction
 - Example: Memories
- Arbiter
 - Arbitrates in Multiple Masters that Want to Initiate Simultaneous Transactions
- Bridge
 - Connects Buses & Passes the Transaction on a Bus to the Other Bus
- The Bus
 - Provides Physical Wires for Address, Data & Control Signals
 - Example: Tri-Stated Bus, Multiplexed Bus, And/Or Bus, Etc.

Traditional Shared-Bus System

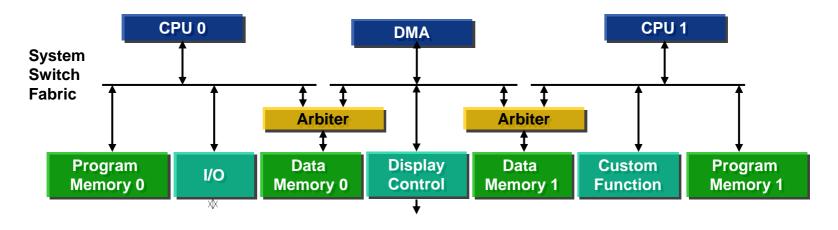


Traditional Shared-Bus System


Bottleneck

- Any Transaction Demands the Same Master-Side Arbiter & Processor System Bus
- Only One Master Can Operate at a Time
- System Bus Can Be Blocked by Processor Cache Line Filling or Any Bulk Data Transfer
- Centralized DMA Architecture Doubles Bus Loading

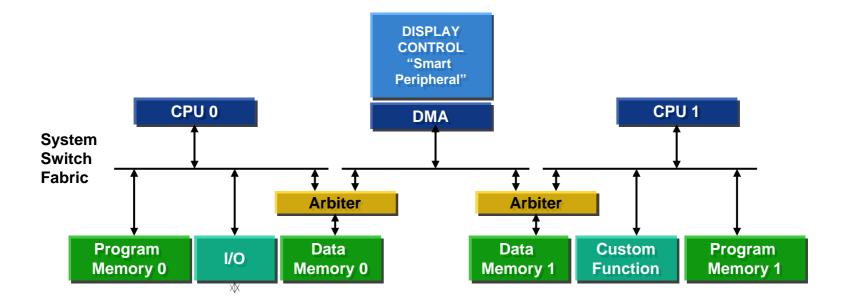
Switch Fabric & Slave-Side Arbitration Scheme



© 2004 Altera Corporation

Switch Fabric & Slave-Side Arbitration Scheme

- Benefit
 - Shared Bus & Shared Arbiter Are No Longer the Bottleneck
 - Multiple Master Transactions Can Operate Simultaneously
 - As Long As They Do Not Access the Same Slave in the Same Bus Cycle
 - I/O Devices Can be Grouped Based on Bandwidth Requirement
- Trade-Off
 - Hardware Resource Usage Increases



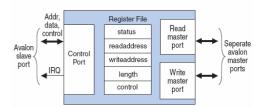
Use Distributed DMA in the Switch Fabric

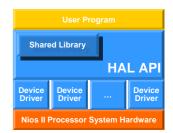
The Smart Peripheral with DMA Function Reduces Latency for Memory Access

Altera Development Tools & IP Supporting DMA

© 2004 Altera Corporation

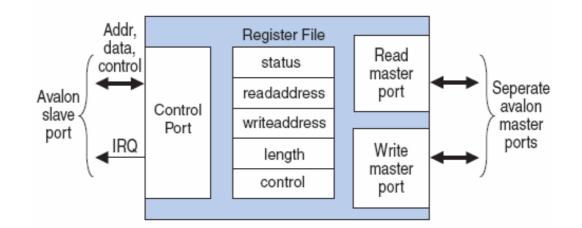
Altera's DMA System Architecture Solution


- Development Tool
 - SOPC Builder
- Hardware
 - DMA Controller IP Core


Software

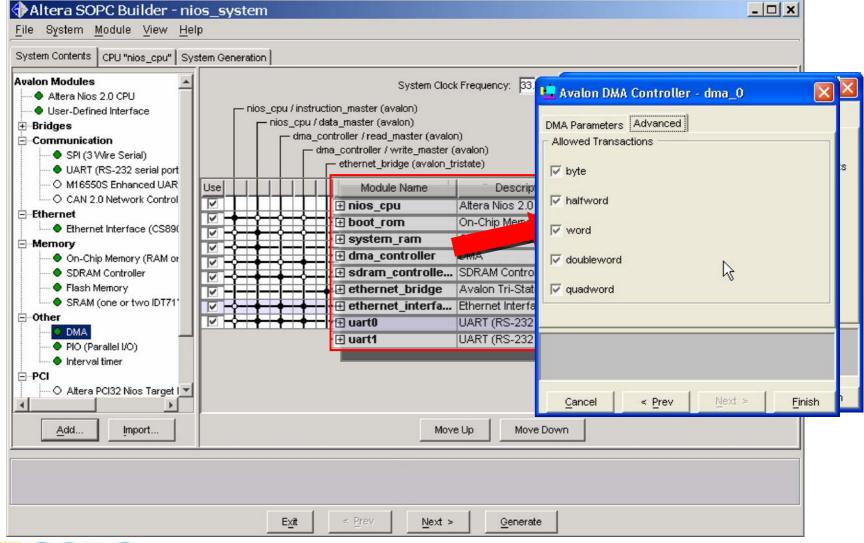
- Header Files
- Hardware Abstraction Layer (HAL)
- Generic Device Models
- Bus Interconnect
 - Avalon[™] Switch Fabric

SOPC Builder Development Tool


🕀 Altera SOPC Builder - nie	os_system					_ [×
File System Module View Hel	p						
System Contents CPU "nios_cpu" Sys	stem Generation						
Avalon Modules Attera Nios 2.0 CPU Attera Nios 2.0 CPU Bridges Communication SPI (3 Wire Serial) UART (RS-232 serial port	System Clock Frequency: 33.333 MHz nios_cpu / instruction_master (avalon) nios_cpu / data_master (avalon) dma_controller / read_master (avalon) dma_controller / write_master (avalon) dma_controller / write_master (avalon) dma_controller / write_master (avalon) dma_controller / write_master (avalon)						
M16550S Enhanced UAR	Use	Module Name	Description	Bus Type	Base	End	IRQ
CAN 2.0 Network Control		🛨 nios_cpu	Altera Nios 2.0 CPU	avalon	1111111	111111	77
Ethernet		→ 🕀 boot_rom	On-Chip Memory (RAM	avalon	0x00801000	0×008013FF	177
Ethernet Interface (CS89)		- 🕂 system_ram	On-Chip Memory (RAM	avalon	0x00800000	0×00800FFF	
Memory		- → 🕀 dma_controller	DMA	avalon	0x00801400	0×0080141F	16
On-Chip Memory (RAM or		- 🛨 sdram_controlle	SDRAM Controller	avalon	0x00000000	0×007FFFFF	
SDRAM Controller		- 🛨 ethernet_bridge	Avalon Tri-State Bridge	avalon avalo	1111111	000000	11
Flash Memory		← 🛨 ethernet_interfa	Ethernet Interface (CS8	avalon_tristate	0x00801420	0×0080143F	17
SRAM (one or two IDT71'		- — 🕀 uart0	UART (RS-232 serial p	avalon	0x00801440	0×0080145F	18
- Other		- ── 🕀 uart1	UART (RS-232 serial p	avalon	0x00801460	0×0080147F	19
DMA PIO (Parallel I/O) Interval timer Origonal Altera PCI32 Nios Target I Altera PCI32 Nios Target I		Mo	ve Up Move Down	<u>\</u>			
	E <u>x</u> it	< Prev Next	> <u>G</u> enerate				

Altera DMA Controller IP Core

- DMA Controller with Avalon Interface
 - Transfers Data with Maximum Pace Allowed by Source & Destination
 - Capable of Performing Slow Streaming Transfers (e.g., an UART)
 - SOPC Builder-Ready, Easy Integration into Any SOPC Builder-Generated System
 - Device Drivers Provided
- Available with Nios II Embedded Processor Core
 - AMPP (Third Party) Stand-Alone DMA Cores Available -<u>www.altera.com/ipmegastore</u>



Avalon DMA Controller

© 2004 Altera Corporation

Standard Parameterized DMA

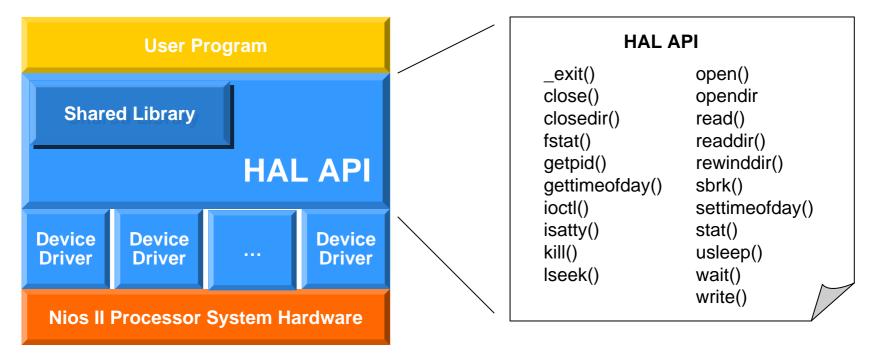
Software Interface

Hardware Abstraction Layer

- Automatically Generated by Nios II
 Integrated Development Environment (IDE)
- Allows Using familiar C library

• printf(), fopen(), fwrite(), etc

- Provides a Simple Interface for Hardware
 Device Driver
- Avoid Direct Access to Hardware Registers for Code Reusability


Nios II HAL Architecture

HAL Details:

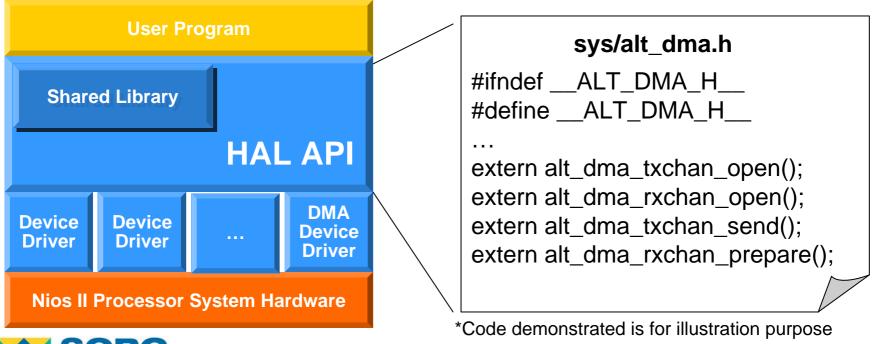
- Nios[®] II Run-Time Library
- Integrated with Newlib ANSI C Library
- Unix-Like API Provided for Development

Provides Following Features:

- Interrupt Handling
- Alarm Facilities
- System & Device Initialization
- Device Access

Nios II HAL Architecture

- Benefit of Using Nios HAL Architecture
 - Tightly Integrated with SOPC Builder to Ensure Software/Hardware Correlation
 - Changes in Hardware Propagate to HAL Automatically
 - Improve Code Reusability by Avoiding Direct Access to Hardware Registers



DMA Programming Model with HAL

The HAL API for DMA Access

- Defined in sys/alt_dma.h, Generated by Nios II IDE
- DMA Device Driver Provided by Altera
 - Integrates to HAL System Library

Avalon Switch Fabric

- High-Performance Interconnect
 - Supporting a Wide Range of Transfer Types Between a Wide Range of Peripherals
 - Parameterizable, Synchronous Operation
 - Scalable Up to 128-Bit Wide Address
 & Data Path
 - Separate Address & Data Paths
 - Separate Read & Write Data Paths
- Single- & Multi-Mastered Systems
- Optimized for FPGAs
- Complete Specification Available from <u>www.altera.com</u>

reset chipselect address byteenable read readdata write writedata data waitrequest readyfordata dataavailable datavalid flush begintransfer endofpacket irq irgnumber clk resetrequest

Most Signals Available In Positive or Negative Form

Avalon Switch Fabric Transfers

- Fundamental Transfers
 - Master Read/Write with Switch Fabric Controlled Wait States
 - Slave Read/Write with 0 Wait States
- Fundamental Transfer Variants
 - Slave Read/Write with:
 - Fixed Wait States, Peripheral-Controlled Wait States, Setup Time, Setup & Hold Times
- Advanced Avalon Transfers
 - Latency-Aware Transfers
 - Streaming Transfers
 - Avalon Tri-State Bridge Transfers for Off-Chip Peripherals

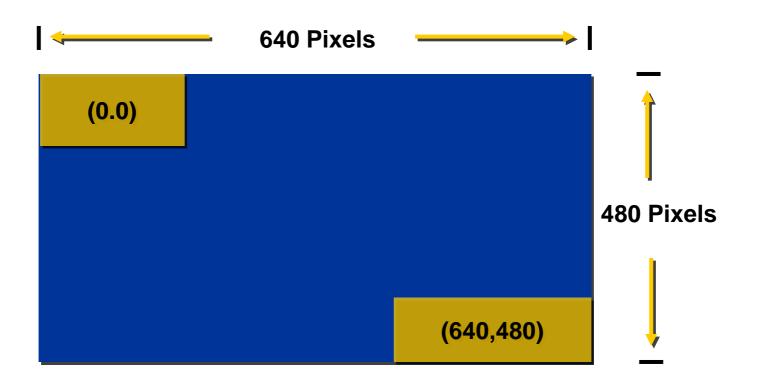


Avalon Switch Fabric

Interconnect Logic

- Allows Masters & Slaves to Communicate without Prior Knowledge or Re-Design
- Supports Independent Development of Peripherals
- Advances Design Re-Use

Example: VGA Controller

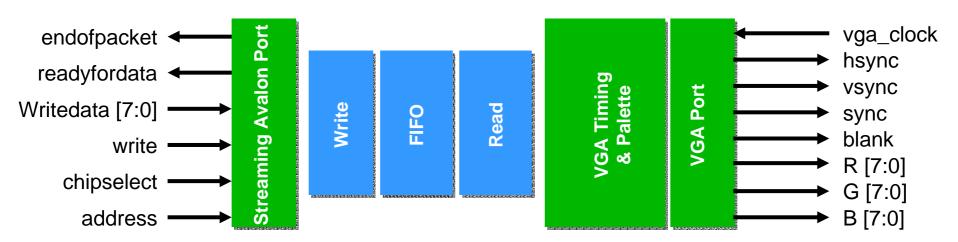

Example: VGA Controller

- Requirements
 - High Bandwidth
- Solution
 - Custom VGA Peripheral
 - Avalon Streaming Mode
- AN 333: Developing Peripherals for SOPC Builder

VGA Monitor Pixel Organization

VGA Peripheral

Peripheral Functional Blocks


- Peripheral Task Logic
- Register File
- Avalon Interface
- Software Driver Functions

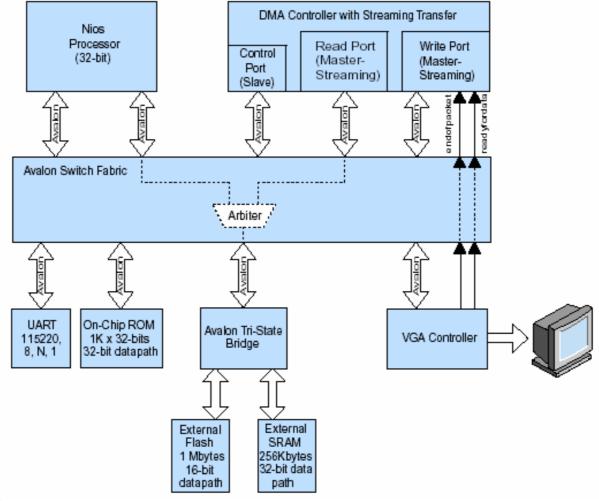
Block Diagram of VGA Display Driver Hardware

Register File & Add	ress Mapping					
Register Name	Offset	Access	Description			
vga_data	0x0	Write-Only	Writing to this Register Stores the 8- Bit Value into the FIFO Line-Buffer			

Avalon Signals for VGA Controller Peripheral

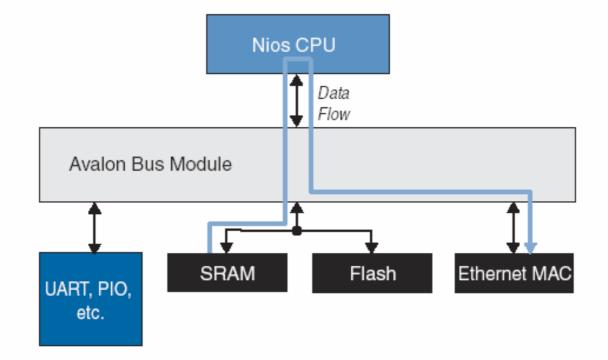
Port Name	Avalon Signal Type	Bit-Width	Direction	Description
clock	clk	1	input	Input clock for writing to the FIFO
reset	reset	1	input	Peripheral reset
CS	chipselect	1	input	Chip select
write	write	1	input	Write-enable signal
fifo data	writedata	8	input	8-bit write data
fifo_not_full	readyfordata	1	output	Streaming transfer signal indicating that new data is accepted
lastpixel	endofpacket	1	output	Streaming transfer signal indicating that the last pixel of a frame was received
vga_clock	Export		input	Input clock for VGA timing and reading data from FIFO
hsync	Export	1	output	Horizontal synchronization signal (output)
sync	Export	1	output	Vertical synchronization signal (output)
Blank	Export	1	output	Logical AND of hsync and vsync (output)
R	Export	8	output	Red color (output)
G	Export	8	output	Green color (output)
В	Export	8	output	Blue color (output)

Ports Tab for the VGA Controller


Peripheral

Interface to Use	er Log	ic - user	_defir	ned_interface_0	×					
Ports Instantiation Timing	Publis	h]								
Bus Inf	erface T	ype: Avalo	n Memory	Slave 💌						
Design Files		· · · ·								
Import Verilog, VHDL	, EDIF, o	r Quartus So	hematic f	File						
vga_	controlle pixel_fife timing.v	r_stream.v p.v								
Top module: vga_co	ntroller_	stream								
Port Information					_					
Port Name	Width	Direction	Shared	Туре	_					
clock	1	input	Shareu	clk						
reset	1	input	7777	reset						
68	1	input	<u> 7777</u>	chipselect	1					
write	1	input	7777	write						
fifo_data	ifo_data 8 input writedata									
fifo_not_full	1	output		dataavailable						
lastpixel	1	output		endofpacket						
address	2	input		address	-					
Read port-lis	t from fil	es 🛛	Add Port	Delete Port						
	🔲 Hide	e Advanced	Signal Tyj	oes						
- AHB Slave's Addres	eshla Sn	ere								
	· ·	×100000000	Y	Bits: 32						
					_					
Cancel < Prev	N	ext >	Add to :	System Addito Libra	ary					

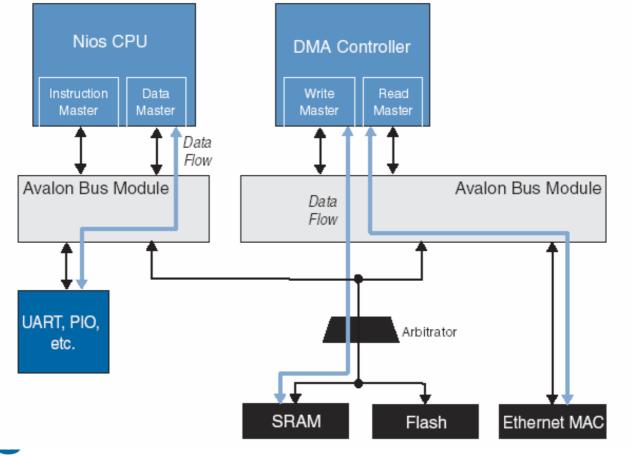
Example System with Streaming VGA Controller



Example: Ethernet Controller

Ethernet Frame Data Transmission Path with Single Master Architecture

Figure 5. Ethernet Frame Data Transmission Path with Single Master Architecture



Ethernet Frame Data Transmission Path Using DMA & Simultaneous Multi-Mastering

Figure 6. Ethernet Frame Data Transmission Path Using DMA & Simultaneous Multi-Mastering Note (1)

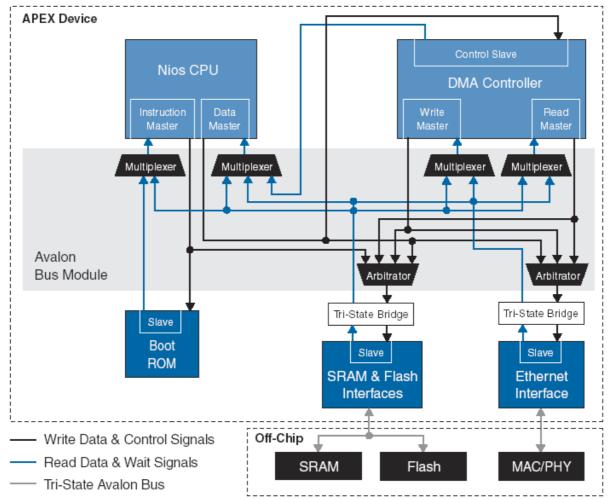
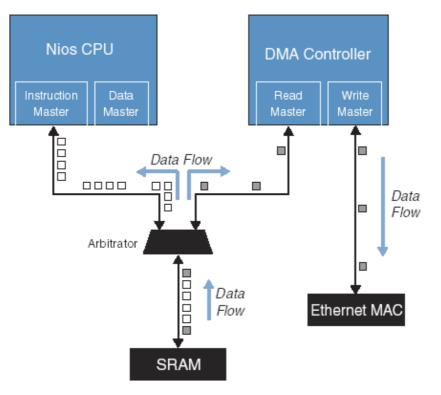

Ethernet Design with DMA Controller

Image: Constraint of the constraint of theconstraint of the constraint of theconstraint of theconstraint of			- opi	u J d	ataj d_n	_ma nem ned	ste ∟bu k_o	r (a 18 () :arc h_(avalon) valon) avalon_tristate) I_bus (avalon_tristate) ima firead_master (avalo eth_dma / vyrite_master (ernet DN Masters	1 A	
✓ ✓ ✓ ✓ ✓ ✓ ✓ Øx00000400 0x00000400 0x00000420 0x00000440 0x00000440 0x00000440 0x00000440 0x00000440 0x0000046F 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Øx00000440 0x0000046F 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Øx00000440 0x0000046F 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Øx00000440 0x0000046F 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Øx000000480 0x00000046F 2 ✓ ✓ ✓ ✓ ✓ ✓ Øx000000480 0x00000048F 2 2 0x000000486F 2 0x000000486F 2 0x000000486F 2 2 0x0000000486F 2	Use								Module Name	Description	Bus Type	Bese	End	RQ
✓ ✓									f cpu	Altera Nics 2.0 CPU	อาจไท		ittittitti	777
✓ ✓		┆──╋─	[_			+	ģ—	🕀 uarti	UART (RS-232 serial	avaion	0x00000400	0x0000041F	26
Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000460 0x00000467 2 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000460 0x00000467 2 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000460 0x100000467 2 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000460 0x100000467 2 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x000000460 0x100000467 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000000 0x100000467 Image: Constraint of the set_flash PiC (Parallel I/O) syalon 0x00000000 0x1000000467 Image: Constraint of the set_flash PiC (Parallel I/O) syalon syalon 0x00000000 0x10000000 Image: Constraint of the set_flash PiS (Parallel I/O) syalon syalon 0x000040000 0x1000077FFFF Image: Constraint of the set_flash Fisch Memory syalon_fristate 0x00100000 0x1001FFFFFF		¢-∳-		_		¢-		ф—	🗄 seven_seg_pio	PIO (Parallell/O)	avalon	0x00000420	0x0000042F	222
Image: Constraint of the set of the						-÷	-	<u> </u>	. timer1	Interval timer	avalon	0x00000440	0x0000045F	26
✓ ✓		ġ _ _∳					+	ģ—	🕀 led_pio	PiO (Parallel I/O)	avalon	0x00000460	0x0000046F	222
Image: State Stat		¢—♦		_		¢-		φ—	🗄 button_pio	PIO (Parallell/0)	avalon	0x00000470	0x0000047F	27
Image: State of the state		\$ ∳-				-¢-	-	ģ—	⊞ lod_pio	PIO (Parallel I/O)	avalon	0×00000480	0x0000048F	222
✓ ✓		• •				-÷	-	ģ—	🗉 boot_monitor_ro	On-Chip Memory (RA	avalon	0x00000000	0x000003FF	SSS
Image: Section of the section of t		• •		_		-¢-		ģ —	🗄 ext_mem_bus	Avalan Tri-State Bridge	avalon avalon_fr	11111111	12111122	888
🗹 - 🔶 +					ф—		-	-	⊞ ext_ram	SRAM (one or t wollD	evalon_tristate	0x00040000	0x0007FFFF	222
		-			一		-	-	🖪 ext_flash	Flash Memory	evelon_tristate	0x00100000	0x001FFFFF	NN
V		\$ _ _∳			\vdash	¢-	-	ģ−	🗄 nedk_card_bus	Avalan Tri-State Bridge	avalon avalon_tr		num e	222
					┢╴				€ enet	Ethernet Interface (CS	evalon_tristate	0x00000500	0x0000051F	30
Image: wide system Image:		┆──╋─					-	-	🗉 eth_dima	DMA	avalon	0x000004A0	0×0000048F	16

System Interconnect Block Diagram

Multi-Master Ethernet Design Arbitration Settings


	Γ	-		/ date	- 	ster	avalon) (avalon) (avalon_tristate)					
					nedkj	_caro eth_o	t_bus (avalon_tristate) dna i'read_master (avalon eth_dma / write_master (a					
Use		r T					Module Name	Description	Bus Type	Base	End	RO
	22	22	33	222	222	27	🖽 cpu	Aftern Nios 2.0 CPU	avaion		anna an	222
v		1	27	122			🕀 uartt	UART (RS-232 serial po	avaion	0::00000400	0x0000041F	26
		1	DD	333			🖽 seven_seg_pio	PIO (Parallel I/O)	avaion	0x00000420	0x0000042F	$\mathcal{S}\mathcal{S}$
v		1	53	222			⊞ timer1	Interval timer	avaion	0x00000440	0x0000045F	25
v		1	$\langle N \rangle$	\mathcal{D}			🖽 led_pio	PiO (Parallel I/O)	avaion	0x00000460	0x0000046F	\overline{CC}
		1	///	22			🖽 button_pio	PIO (Parallel I/O)	avaion	0x00000470	0x0000047F	27
		1	55	22			⊞ led_pio	PIO (Parallel I/D)	avalon	0x00000480	0x0000049F	883
V	1	1	\overline{Z}	223			🗄 boot_monitor_rom	On-Chip Memory (RAM	avaion	0x00000000	0x000003FF	$\overline{\mathcal{M}}$
	4	4	11	282	1	1	⊞ ext_mem_bus	Avaion Tri-State Bridge	avalon avalon_tri	mmm	aanaa	22
	20	12	1		222	22	⊞ ext_ram	SRAM (one or two IDT7	avalon_tristate	0x00040000	0x0007FFFF	122
v	383	100	1		222	22	⊞ ext_flash	Flash Memory	svalon_tristate	0x00100000	0x001FFFFF	$\langle 0 \rangle$
		1	$\langle N \rangle$	32	1	1	🖽 nedk_card_bus	Avalon Tri-State Bridge	avalon avaion_tri	1111111	anna	22
	22	223		1	22	38	⊞ enet	Ethernet Intertace (CS8	avalon_tristate	0x00000500	0x0000051F	30
		1	\mathcal{N}	$\mathcal{O}\mathcal{O}$	12	22	🖽 eth_dma	DMA	avaion	0x000004A0	0×000004EF	18

Simplified View of Arbitration During Conflict between DMA & CPU

Figure 15. Simplified View of Arbitration during Conflict between DMA & CPU

The Nios CPU instruction master and DMA controller read master both request continuous access to the shared SRAM.

DMA Routine for Transmitting Frames

DMA Routine for Receiving Frames

```
// Half-word pointer to the receive data buffer
w = g_frame_buffer;
// Begin new SMM tutorial DMA code
{
    // Declare "ethDMA" as pointer to "eth_dma"
    np_dma *ethDMA = na_eth_dma;
    // Wait for any pending DMA transfers to complete
    while(!(ethDMA->np_dmastatus & np_dmastatus_done_mask) && ethDMA->np_dmastatus != 0);
    // Perform DMA transfer
    nr_dma_copy_1_to_range(na_eth_dma, 2, (void *)&e->np_cs8900iodata0, (void *)w,
frame_length);
}
// End new SMM tutorial DMA code
```


Example: CPRI Controller

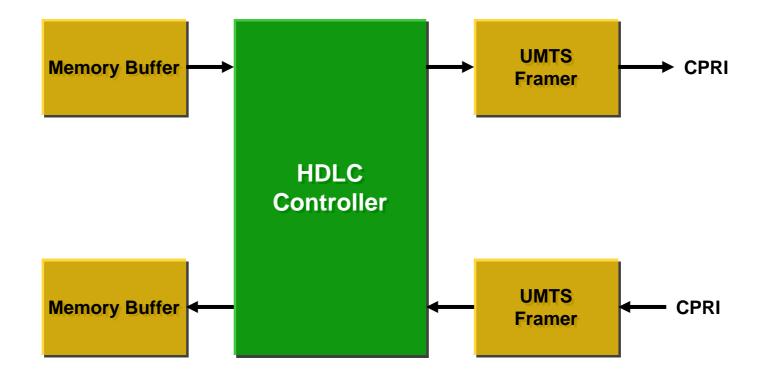
Example: CPRI Controller

CPRI

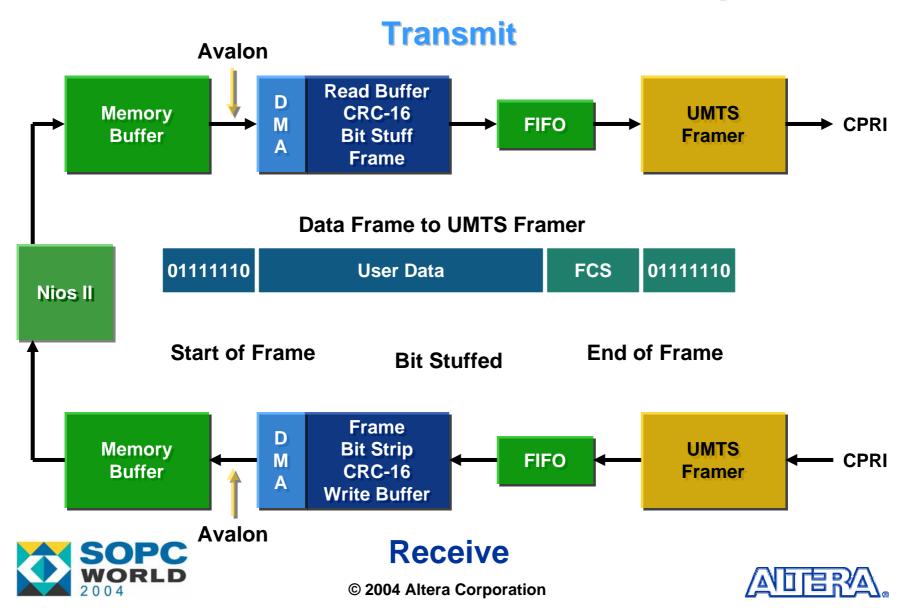
- Common Packet Radio Interface
- Open Standard Between Radio Equipment & Radio Equipment Controller

System Requirements

- Data Management Function for Base-Station
- HDLC-Like Framer for Control Frames


CPRI Controller

- HDLC Controller as a Smart Peripheral
- Implemented as Half DMA Engine
 - Separate Buffers for Read Data & Write Data
 - Reduced Design Size: Went from >2,000
 Logic Elements (LEs) to <200 LEs


CPRI Architectural Solution

CPRI Interface With Smart Peripheral

Benefits of this Methodology

Simplifies Core

- Uses Nios II CPU as a System Component
- Uses Nios II CPU (Already Present) + Simple Peripherals

Removes Clocking Constraints

- No Re-Timing for UMTS Framer Necessary
- Abstracts the Hardware
 - Software Engineer-Friendly
 - Only Design High-Level Drivers Once

Related Documentation

- Application Notes & Tutorials
 - AN 333: Developing Peripherals for SOPC Builder
 - AN 184: Simultaneous Multi-Mastering with the Avalon Bus
 - Tutorial: Simultaneous Multi-Mastering with the Nios Processor

Thank You !

