
© 2002© 2004 Altera Corporation

Increase System
Performance & Efficiency
Using Distributed Direct
Memory Access (DMA)

Increase System
Performance & Efficiency
Using Distributed Direct
Memory Access (DMA)

Block Data Transfer Becomes a
Challenge in a Complex System
Block Data Transfer Becomes a
Challenge in a Complex System

Common Problems with Block Data Transfer
Efficiency
− Meeting Individual Bandwidth Requirement
− Traffic Priority & Overall Performance
− Hardware Design Complexity & Maintainability

© 2004 Altera Corporation

State Machine
& Multiplexer

State Machine
& Multiplexer

Audio/VideoAudio/Video

Packet
Processing

Packet
Processing

Ethernet
MAC

Ethernet
MAC

UARTUART GPIOGPIO

MemoryMemory

Solutions to Improve Block Data
Transfer Efficiency
Solutions to Improve Block Data
Transfer Efficiency

Solutions Problems/Issues
State Machine & Multiplexer Difficult to Manage the Source Code

Difficult to Analyze System Efficiency

Direct Memory Access May Marginally Increase Hardware

Direct Wire to Dedicated
Memories

Cost of Memory Devices
Cost of Logic & Routings

Using Processors to Move Data Longer Latencies

© 2004 Altera Corporation

AgendaAgenda
Direct Memory Access (DMA)
Switch Fabric & Slave-Side Arbitration
Altera’s Development Tools & IP
Supporting DMA
Examples
− VGA Controller
− Ethernet Controller
− CPRI

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

What is DMA?What is DMA?

© 2004 Altera Corporation

DMA—Direct Memory AccessDMA—Direct Memory Access

DMADMA

ProcessorProcessor

STATUS / IRQSTATUS / IRQ

MemoryMemory

DMA
READ

DMA
WRITE

Data
AcquisitionI/O

Peripheral
I/O

Peripheral

CMDCMD

Allows a Bounded Number or Sequential Data Transfer
Between Regions in the Address Space
− Typically Between Memories & Peripherals

Memory to Memory
Peripheral to Peripheral
Memory to Peripheral
Peripheral to Memory

Used in Processor & Bus Architecture

B
U
S

Benefit of Using DMA in FPGAsBenefit of Using DMA in FPGAs
Simplifies the Hardware Design
− Eliminates Low-Level Control Logic for Data-Movements
− Provides Standardized Interface for Peripherals
− Enables Re-Useable Hardware Blocks

Altera’s DMA block

Software Engineer-Friendly
− Abstracts the Hardware

All Data Movement Controlled by Software
− Only Design High-Level Drivers Once

Never if Using Altera’s DMA Block

Increases System Performance
− Eliminates Processor Bottleneck in Data Movement
− Offloads Processors to Perform Other Tasks in Parallel

© 2004 Altera Corporation

B
U
S

Typical DMA TransactionTypical DMA Transaction

MemoryMemory

RD ADDRRD ADDR

WR ADDRWR ADDR

LENGTHLENGTH

CONTROLCONTROL

STATUSSTATUS READ
MASTER

PORT

READ
MASTER

PORT

WRITE
MASTER

PORT

WRITE
MASTER

PORT

0xEA0030000xEA003000

0xFF0000000xFF000000
ProcessorProcessor

Processor Performs
Other Tasks

in Parallel

DMA
READ

STATUS/
IRQ

I/O
Peripherals

I/O
Peripherals

FIFOFIFO

DMA
WRITE

Data
Acquisition

DMA

Step 1: CPU Initializes Transfer Command to the DMA Controller,
Then Enables the DMA
− Assigns RD & WR Starting Address, Transfer Length, Etc.

Step 2: DMA Begins Data Transfer without Processor Intervention
Step 3: DMA Completes Data Transfer & Sets Completion Status (or
IRQ) to the Processor

© 2004 Altera Corporation

B
U
S

Same Transaction without DMASame Transaction without DMA

MemoryMemory

0xEA003000

0xFF000000

The Processor Must Execute a Time-Consuming
Software Routine

Need Variables to Maintain Read & Write Data Counts
Need Pointers for Read & Write Address Increments
Need Data Structure for Temporary Buffering

I/O
Peripherals

I/O
Peripherals

DATA WRTIE

Data
Acquisition

DATA READ

ProcessorProcessor

© 2004 Altera Corporation

Design with DMA vs. without DMADesign with DMA vs. without DMA
•Benchmark Results for
16-bit Cyclic Redundancy Check Algorithm (CRC16-CCITT)

Design With DMA Design Without DMA

Aspect
DMA-Enabled

Smart Peripheral
(Clock Cycles)

Bit-by-Bit
Software Algorithm

(Clock Cycles)
8 Byte Message 243 2,838

512 Byte Message 582 181,753

363,243
23,264,648

Baseline

1KB Message 922
64KB Message 43,925
Hardware
Resources Utilized

~975 Additional
Logic Elements

© 2004 Altera Corporation

Other DMA EnhancementsOther DMA Enhancements
Multi-Channel DMA Controllers
Event- or Time-Triggered DMA
Two-Dimensional DMA Transfer
Scatter-Gather DMA Using Descriptors

© 2004 Altera Corporation

Multi-Channel DMA ControllersMulti-Channel DMA Controllers
Multiple Peripherals Can Time-Share DMA Controller & Bus
Utilization
In the Following Example:
− DMA Can Serve All 3 Devices & Meet Bandwidth Requirement
− Ethernet Can Be Allocated with Higher Priority while UART is Filling

the FIFO & Video Controller is Filling the Frame Buffer

Multi-Channel DMA

On-Chip MemoryOn-Chip Memory

Ethernet MACEthernet MAC

Channel Manager
Who’s Ready? Who Has the Priority?

Channel Manager
Who’s Ready? Who Has the Priority?

DDR SDRAMDDR SDRAM

VideoVideo

Ch = 1 Command Status

UART UART

Ch = 0 Command Status

Ch = 2 Command Status

B
U
S

B
U
S

Ch 2
SRC
Ch 2
SRC

Ch 1
DST
Ch 1
DST

Ch 0
DST
Ch 0
DST

Ch 2
DST
Ch 2
DST

Ch 0
SRC
Ch 0
SRC

Ch 1
SRC
Ch 1
SRC

© 2004 Altera Corporation

Multi-Channel DMA ControllersMulti-Channel DMA Controllers
Each Channel is Granted to a Portion of Service Time
A Channel Manager Arbitrates the Service by Monitoring:
− Transfer Priority, Data Readiness & Memory Type
− Available with Most High-End Processors & Digital Signal

Processors

Multi-Channel DMA

Ch 1 DestinationCh 1 Destination

Ch2 SourceCh2 Source

Channel Manager
Who’s Ready? Who Has the Priority?

Channel Manager
Who’s Ready? Who Has the Priority?

Ch 0 DestinationCh 0 Destination

Ch1 SourceCh1 Source

Ch = 1 Command Status

Ch0 SourceCh0 Source

Ch = 0 Command Status

Ch = 2 Command Status

Ch 2 DestinationCh 2 Destination

B
U
S

B
U
S

© 2004 Altera Corporation

Event- or Time-Triggered DMA Event- or Time-Triggered DMA
Can be Used in Conjunction with Data Acquisition
Buffering, Packet or Frame Processing, Time-Based
Counter, etc.
Events Can Come From Multiple Sources or a “Default”
Example: High-Level Data Link Control Interface

DMADMA HDLC Interface

MemoryMemory

HDLC Frame (RX)HDLC Frame (RX)RX

TX

RX FIFO

TX FIFO HDLC Frame (TX)HDLC Frame (TX)

Event
Trigger
Event

Trigger

Or
Build-in
Timer

Or
Build-in
Timer

FIFO FULL /FIFO FULL /

FIFO EMPTYFIFO EMPTY

© 2004 Altera Corporation

Two-Dimensional DMA TransferTwo-Dimensional DMA Transfer
Example: JPEG Still Color Image Coding
− All JPEG DCT-Based Coders Process 8x8

Blocks of Component at a Time
− Need to Transfer the 8x8 Blocks for Processing

Display
Image

Display
Image 8x88x8

8x88x8
JPEG Coder

DCT,
Zigzag Scan,

Entropy-Encoding

JPEG Coder
DCT,

Zigzag Scan,
Entropy-Encoding

8x88x8
8x88x8

Compressed Data
(For Transmission or
For Storage)

© 2004 Altera Corporation

© 2004 Altera Corporation

Two-Dimensional DMA Transfer Two-Dimensional DMA Transfer
Line Length, Line Count & Line Pitch Can Be Embedded in the Transfer
Command
Address Will Be Incremented Based on the 2D Calculation
− If “End-of-Line” : Address = Address + (Line Pitch – Line Length)
− Otherwise: Address = Address + 1

Transfer Can Mix 2D-to-2D, 2D-to-1D, 1D-to-2D (Source-to-Destination)
Line Length

Line Pitch

Line
Count

Starting
Address

In This example:

Line Length = 6

Line Count = 4

Line Pitch = 8

Line Pitch – Line Length = 2

In This example:

Line Length = 6

Line Count = 4

Line Pitch = 8

Line Pitch – Line Length = 2

NextAddr = CurrAddr + 1

NextAddr = CurrAddr +
(Line Pitch – Line Length)

Scatter-Gather DMA Using Descriptors Scatter-Gather DMA Using Descriptors
DMA Automatically Executes a Series of Operations Based
on the Link List of Descriptors Data Structure
Reduces Initialization Overhead for Individual Transfer
Command
EX: 3G Channel Element Card, Base Station

Current
Descriptor
Current

Descriptor

Next
Descriptor

Next
Descriptor

S/G DMA Descriptor Data Structure
(Maintained by Software)Transfer Status

Transfer CMD

Next Descriptor

Descriptor

RD ADDR
WR ADDR
LENGTH

…..

Transfer Status
Transfer CMD

Next Descriptor

Descriptor

RD ADDR
WR ADDR
LENGTH

…..

Transfer Status
Transfer CMD

Descriptor

…..

Transfer Status
Transfer CMD

RD ADDR
WR ADDR
LENGTH

…..

© 2004 Altera Corporation

Combine Various DMA EnhancementsCombine Various DMA Enhancements
To Achieve the Best Performance, Combine Various
DMA Enhancements:
− Basic DMA Controllers
− Multi-Channel DMA
− Event- or Time-Triggered DMA
− Two-Dimensional DMA
− Scatter-Gather DMA Using Descriptors

© 2004 Altera Corporation

Introduction to Distributed DMAIntroduction to Distributed DMA
Distributed DMA Definition:
− The Integration of DMA Controllers Into Peripherals; or
− The Distribution of DMA Controllers Across The Bus Hierarchy

(non-centralized)

MemoryMemory

PeripheralPeripheral

B
U
S

B
U
S

D
M
A

Peripheral

© 2004 Altera Corporation

Peripheral
D
M
A

PeripheralPeripheral
D
M
A

ArbiterArbiter

Benefits of Distributed DMABenefits of Distributed DMA

Simplifies the Hardware Design
− Eliminates Low-Level Control Logic for Data-Movements
− Provides Standardized Interface for Peripherals
− Enables Re-Useable Hardware Blocks

Software Engineer-Friendly
− Abstracts the Hardware

All Data Movement Controlled by Software
− Only Design High-Level Drivers Once

Never if Using Altera’s DMA Block

Increases System Performance
− Eliminates Processor Bottleneck in Data Movement
− Offloads Processors to Perform Other Tasks in Parallel

Note: DMA Benefits in Blue Enabled by Distributed DMA

© 2004 Altera Corporation

Distributed DMA ExampleDistributed DMA Example
Combining the DMA Controller & HDLC Interface Will
Become a Distributed DMA Topology
− Reduces Latencies

HDLC Frame (RX)HDLC Frame (RX)RX

TX

RX FIFO

TX FIFO HDLC Frame (TX)HDLC Frame (TX)

Event
Trigger
Event

Trigger

Or
Build-in
Timer

Or
Build-in
Timer

HDLC Interface Controller w/
Built-In Distributed DMA Function

FIFO FULL /

FIFO EMPTY

© 2004 Altera Corporation

B
U
S

B
U
S

Smart
Peripheral

Peripheral
(Slave)

Peripheral
(Slave)

Memory
(Slave)
Memory
(Slave)

DMADMA
READ PORT

(Master)
WRITE PORT

(Master)

Centralized DMA Mechanism

Centralized DMA vs. Distributed DMACentralized DMA vs. Distributed DMA
Aspect Centralized DMA Distributed DMA
Hardware
Resources

Multiple Devices Can Share the
Same DMA

Overall System May Consume
More Logic

Bus Loading Double Bus Loading Single Bus Loading
Master & Slave
Consideration

DMA Controller Has 2 Master
Ports: Read & Write

Peripheral Must Have Master
Capability

Memory
(Slave)
Memory
(Slave)

Peripheral
(Master)

Peripheral
(Master)

B
U
S

B
U
S

Distributed DMA Mechanism

D
M
A

D
M
A

© 2004 Altera Corporation

Smart Peripherals with
Distributed DMA
Smart Peripherals with
Distributed DMA

Smart Peripherals Are
Capable of Initiating
DMA Data Transactions
to & from Memory
Built-In Intelligence
− Default Event Trigger
− Default Source or

Destination Address
− Default Data Count &

Transfer Type

DMADMA

ProcessorProcessor

STATUS / IRQSTATUS / IRQ

MemoryMemory

DMA
READ

DMA
WRITE

Data Acquisition

SmartSmart
PeripheralPeripheral

B
U
S

CMD

No Need to Send a Command.
Smart Peripherals Knows What To Do!

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

Advanced Bus Interconnect
Architectures
Advanced Bus Interconnect
Architectures

Bus ArchitectureBus Architecture
Bus
− A Shared Communication Link that Connects I/O Pins to

Memory & Processor Subsystems
Advantages of Applying Bus Architecture
− Low Cost: Set of Wires is Shared in Multiple Ways
− Versatility: Well-Defined Interconnection Scheme Allows

Devices to be Added or Removed Easily
Caveat of Applying Bus Architecture
− Without Proper Design, a Bus Architecture May:

Create Data Traffic Bottlenecks
Limit Maximum I/O Throughput

© 2004 Altera Corporation

Bus Design DecisionsBus Design Decisions
Bus Width & Data Width
Number of Masters & Arbitration Scheme
Type of Devices Connected to the Bus
− Processors & Co-Processors
− Memories & Buffers
− High-Speed I/O Pins
− Low-Speed I/O Pins

Bus Hierarchy
Performance & Cost

© 2004 Altera Corporation

Basic Components of BusBasic Components of Bus
Master
− Initiates a Read or Write Transaction
− Example: Processors

Slave
− Responds to a Transaction
− Example: Memories

Arbiter
− Arbitrates in Multiple Masters that Want to Initiate Simultaneous

Transactions
Bridge
− Connects Buses & Passes the Transaction on a Bus to the Other Bus

The Bus
− Provides Physical Wires for Address, Data & Control Signals
− Example: Tri-Stated Bus, Multiplexed Bus, And/Or Bus, Etc.

© 2004 Altera Corporation

Traditional Shared-Bus SystemTraditional Shared-Bus System

Processor System Bus Processor System Bus

CPU 0CPU 0 DMADMA CPU 1CPU 1

Master-Side
Arbiter

Master-Side
Arbiter

PROGRAM
MEMORY 0
PROGRAM
MEMORY 0 I/OI/O CUSTOM

FUNCTION
CUSTOM

FUNCTION
DATA

MEMORY 1
DATA

MEMORY 1
VGA

CONTROL
VGA

CONTROL
PROGRAM
MEMORY 1
PROGRAM
MEMORY 1

DATA
MEMORY 0

DATA
MEMORY 0

System
Bottleneck

System
Bottleneck

© 2004 Altera Corporation

Bottleneck
− Any Transaction Demands the Same Master-Side

Arbiter & Processor System Bus
− Only One Master Can Operate at a Time
− System Bus Can Be Blocked by Processor Cache Line

Filling or Any Bulk Data Transfer
− Centralized DMA Architecture Doubles Bus Loading

Traditional Shared-Bus SystemTraditional Shared-Bus System

Processor System Bus Processor System Bus

CPU 0CPU 0 DMADMA CPU 1CPU 1

Master-Side
Arbiter

Master-Side
Arbiter

PROGRAM
MEMORY 0
PROGRAM
MEMORY 0 I/OI/O CUSTOM

FUNCTION
CUSTOM

FUNCTION
DATA

MEMORY 1
DATA

MEMORY 1
VGA

CONTROL
VGA

CONTROL
PROGRAM
MEMORY 1
PROGRAM
MEMORY 1

DATA
MEMORY 0

DATA
MEMORY 0

System
Bottleneck

System
Bottleneck

© 2004 Altera Corporation

Switch Fabric & Slave-Side
Arbitration Scheme
Switch Fabric & Slave-Side
Arbitration Scheme

Display
Control
Display
Control

CPU 0CPU 0 DMADMA CPU 1CPU 1

Program
Memory 0
Program
Memory 0 I/OI/O Custom

Function
Custom
Function

Data
Memory 1

Data
Memory 1

System
Switch
Fabric

Program
Memory 1
Program
Memory 1

Data
Memory 0

Data
Memory 0

ArbiterArbiter ArbiterArbiter

© 2004 Altera Corporation

Switch Fabric & Slave-Side
Arbitration Scheme
Switch Fabric & Slave-Side
Arbitration Scheme

Display
Control
Display
Control

Benefit
− Shared Bus & Shared Arbiter Are No Longer the Bottleneck
− Multiple Master Transactions Can Operate Simultaneously

As Long As They Do Not Access the Same Slave in the Same Bus Cycle
− I/O Devices Can be Grouped Based on Bandwidth Requirement

Trade-Off
− Hardware Resource Usage Increases

CPU 0CPU 0 DMADMA CPU 1CPU 1

Program
Memory 0
Program
Memory 0 I/OI/O Custom

Function
Custom
Function

Data
Memory 1

Data
Memory 1

Program
Memory 1
Program
Memory 1

Data
Memory 0

Data
Memory 0

ArbiterArbiter ArbiterArbiter

System
Switch
Fabric

© 2004 Altera Corporation

Use Distributed DMA in the Switch
Fabric
Use Distributed DMA in the Switch
Fabric

CPU 0CPU 0 DMADMA CPU 1CPU 1

Program
Memory 0
Program
Memory 0 I/OI/O Custom

Function
Custom
Function

Data
Memory 1

Data
Memory 1

DISPLAY
CONTROL

“Smart
Peripheral”

DISPLAY
CONTROL

“Smart
Peripheral”

System
Switch
Fabric

Program
Memory 1
Program
Memory 1

Data
Memory 0

Data
Memory 0

ArbiterArbiter ArbiterArbiter

The Smart Peripheral with DMA Function Reduces Latency
for Memory Access

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

Altera Development Tools
& IP Supporting DMA
Altera Development Tools
& IP Supporting DMA

Altera’s DMA System Architecture SolutionAltera’s DMA System Architecture Solution

Development Tool
− SOPC Builder

Hardware
− DMA Controller IP Core

Software
− Header Files
− Hardware Abstraction Layer (HAL)
− Generic Device Models

Bus Interconnect
− Avalon™ Switch Fabric

Nios II Processor System Hardware

Device
Driver

Device
Driver

Device
Driver…

HAL API
Shared LibraryShared Library

User Program

clk
address
read_n

chipselect

readdata
waitrequest

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l

clk
address

M
as

te
r P

or
t

A
va

lo
n

Sw
itc

h
Fa

br
ic

write_n

waitrequest

writedata

read_n
readdata

© 2004 Altera Corporation

SOPC Builder Development ToolSOPC Builder Development Tool

© 2004 Altera Corporation

Altera DMA Controller IP CoreAltera DMA Controller IP Core
DMA Controller with Avalon Interface
− Transfers Data with Maximum Pace Allowed by Source & Destination
− Capable of Performing Slow Streaming Transfers (e.g., an UART)
− SOPC Builder-Ready, Easy Integration into Any SOPC Builder-Generated System
− Device Drivers Provided

Available with Nios II Embedded Processor Core
− AMPP (Third Party) Stand-Alone DMA Cores Available -

www.altera.com/ipmegastore

© 2004 Altera Corporation

Avalon DMA Controller

Standard Parameterized DMAStandard Parameterized DMA

© 2004 Altera Corporation

Software InterfaceSoftware Interface

Hardware Abstraction Layer
− Automatically Generated by Nios II

Integrated Development Environment (IDE)
− Allows Using familiar C library

printf(), fopen(), fwrite(), etc
− Provides a Simple Interface for Hardware

Device Driver
− Avoid Direct Access to Hardware Registers

for Code Reusability

© 2004 Altera Corporation

Nios II HAL ArchitectureNios II HAL Architecture
Provides Following Features:

Interrupt Handling
Alarm Facilities
System & Device Initialization
Device Access

HAL Details:
Nios® II Run-Time Library
Integrated with Newlib ANSI C Library
Unix-Like API Provided for Development

Nios II Processor System Hardware

Device
Driver

Device
Driver

Device
Driver…

_exit()
close()
closedir()
fstat()
getpid()
gettimeofday()
ioctl()
isatty()
kill()
lseek()

open()
opendir
read()
readdir()
rewinddir()
sbrk()
settimeofday()
stat()
usleep()
wait()
write()

HAL API

HAL API

Shared LibraryShared Library

User Program

© 2004 Altera Corporation

Nios II HAL ArchitectureNios II HAL Architecture

Benefit of Using Nios HAL Architecture
− Tightly Integrated with SOPC Builder to

Ensure Software/Hardware Correlation
− Changes in Hardware Propagate to HAL

Automatically
− Improve Code Reusability by Avoiding Direct

Access to Hardware Registers

© 2004 Altera Corporation

© 2004 Altera Corporation

The HAL API for DMA Access
− Defined in sys/alt_dma.h, Generated by Nios II IDE

DMA Device Driver Provided by Altera
− Integrates to HAL System Library

Nios II Processor System Hardware

Device
Driver

Device
Driver

DMA
Device
Driver

…

#ifndef __ALT_DMA_H__
#define __ALT_DMA_H__
…
extern alt_dma_txchan_open();
extern alt_dma_rxchan_open();
extern alt_dma_txchan_send();
extern alt_dma_rxchan_prepare();

sys/alt_dma.h

HAL API

Shared LibraryShared Library

User Program

DMA Programming Model with HALDMA Programming Model with HAL

*Code demonstrated is for illustration purpose

© 2004 Altera Corporation

Avalon Switch FabricAvalon Switch Fabric Avalon Signal Types
reset

chipselect
address

byteenable
read

readdata
write

writedata
data

waitrequest
readyfordata

dataavailable
datavalid

flush
begintransfer

endofpacket
irq

irqnumber
clk

resetrequest

Most Signals Available
In Positive or Negative

Form

Avalon Signal Types
reset

chipselect
address

byteenable
read

readdata
write

writedata
data

waitrequest
readyfordata

dataavailable
datavalid

flush
begintransfer

endofpacket
irq

irqnumber
clk

resetrequest

Most Signals Available
In Positive or Negative

Form

High-Performance Interconnect
− Supporting a Wide Range of Transfer

Types Between a Wide Range of
Peripherals

− Parameterizable, Synchronous
Operation

− Scalable Up to 128-Bit Wide Address
& Data Path

Separate Address & Data Paths
Separate Read & Write Data Paths

Single- & Multi-Mastered Systems
Optimized for FPGAs
Complete Specification Available
from www.altera.com

Avalon Switch Fabric TransfersAvalon Switch Fabric Transfers
Fundamental Transfers
− Master Read/Write with Switch Fabric Controlled Wait

States
− Slave Read/Write with 0 Wait States

Fundamental Transfer Variants
− Slave Read/Write with:

Fixed Wait States, Peripheral-Controlled Wait States, Setup
Time, Setup & Hold Times

Advanced Avalon Transfers
− Latency-Aware Transfers
− Streaming Transfers
− Avalon Tri-State Bridge Transfers for Off-Chip

Peripherals

© 2004 Altera Corporation

© 2004 Altera Corporation

clk
address

write_n

waitrequest

writedata

read_n
readdata

clk

address

read_n

chipselect

readdata
waitrequest

Avalon Switch FabricAvalon Switch Fabric
Interconnect Logic
− Allows Masters & Slaves to Communicate without

Prior Knowledge or Re-Design
− Supports Independent Development of Peripherals
− Advances Design Re-Use

Pe
rip

he
ra

l
Pe

rip
he

ra
l

Pe
rip

he
ra

l

Sl
av

e
Po

rt
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Pe

rip
he

ra
l

Pe
rip

he
ra

l

M
as

te
r P

or
t

M
as

te
r P

or
t

A
va

lo
n

Sw
itc

h
Fa

br
ic

A
va

lo
n

Sw
itc

h
Fa

br
ic

© 2002© 2004 Altera Corporation

Example:
VGA Controller
Example:
VGA Controller

Example: VGA ControllerExample: VGA Controller
Requirements
− High Bandwidth

Solution
− Custom VGA Peripheral
− Avalon Streaming Mode

AN 333: Developing Peripherals for SOPC
Builder

© 2004 Altera Corporation

VGA Monitor Pixel OrganizationVGA Monitor Pixel Organization

640 Pixels

(0.0)(0.0)

(640,480)(640,480)

480 Pixels

© 2004 Altera Corporation

VGA PeripheralVGA Peripheral
Peripheral Functional Blocks
− Peripheral Task Logic
− Register File
− Avalon Interface
− Software Driver Functions

© 2004 Altera Corporation

Block Diagram of VGA Display
Driver Hardware
Block Diagram of VGA Display
Driver Hardware

Register File & Address Mapping
Register Name Offset Access Description
vga_data 0x0 Write-Only Writing to this Register Stores the 8-

Bit Value into the FIFO Line-Buffer
St

re
am

in
g

A
va

lo
n

Po
rt

W
rit

e

FI
FO

R
ea

d

VG
A

 T
im

in
g

&
 P

al
et

te

VG
A

 P
or

t

vga_clock
hsync
vsync
sync
blank
R [7:0]
G [7:0]
B [7:0]

endofpacket

readyfordata

Writedata [7:0]

write

chipselect

address

© 2004 Altera Corporation

Avalon Signals for VGA Controller PeripheralAvalon Signals for VGA Controller Peripheral
Port Name Avalon Signal Type Bit-Width Direction Description
clock clk 1 input Input clock for writing to the FIFO

reset reset 1 input Peripheral reset

hsync Export 1 output Horizontal synchronization signal (output)

sync Export 1 output Vertical synchronization signal (output)

Blank Export 1 output Logical AND of hsync and vsync (output)

R Export 8 output Red color (output)

G Export 8 output Green color (output)

cs chipselect 1 input Chip select

write write 1 input Write-enable signal

fifo data writedata 8 input 8-bit write data

fifo_not_full readyfordata 1 output Streaming transfer signal indicating that new
data is accepted

lastpixel endofpacket 1 output Streaming transfer signal indicating that the
last pixel of a frame was received

vga_clock Export input Input clock for VGA timing and reading data
from FIFO

B Export 8 output Blue color (output)

© 2004 Altera Corporation

© 2004 Altera Corporation

Ports Tab for the VGA Controller
Peripheral
Ports Tab for the VGA Controller
Peripheral

Example System with Streaming
VGA Controller
Example System with Streaming
VGA Controller

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

Example:
Ethernet Controller
Example:
Ethernet Controller

Ethernet Frame Data Transmission
Path with Single Master Architecture
Ethernet Frame Data Transmission
Path with Single Master Architecture

© 2004 Altera Corporation

Ethernet Frame Data Transmission Path Using
DMA & Simultaneous Multi-Mastering
Ethernet Frame Data Transmission Path Using
DMA & Simultaneous Multi-Mastering

© 2004 Altera Corporation

Ethernet Design with DMA ControllerEthernet Design with DMA Controller

Ethernet DMA
Masters

© 2004 Altera Corporation

System Interconnect Block DiagramSystem Interconnect Block Diagram

© 2004 Altera Corporation

Multi-Master Ethernet Design
Arbitration Settings
Multi-Master Ethernet Design
Arbitration Settings

© 2004 Altera Corporation

Simplified View of Arbitration During
Conflict between DMA & CPU
Simplified View of Arbitration During
Conflict between DMA & CPU

© 2004 Altera Corporation

DMA Routine for Transmitting FramesDMA Routine for Transmitting Frames

© 2004 Altera Corporation

DMA Routine for Receiving FramesDMA Routine for Receiving Frames

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

Example:
CPRI Controller
Example:
CPRI Controller

Example: CPRI ControllerExample: CPRI Controller
CPRI
− Common Packet Radio Interface
− Open Standard Between Radio Equipment &

Radio Equipment Controller
System Requirements
− Data Management Function for Base-Station
− HDLC-Like Framer for Control Frames

© 2004 Altera Corporation

CPRI ControllerCPRI Controller
HDLC Controller as a Smart Peripheral
Implemented as Half DMA Engine
− Separate Buffers for Read Data & Write Data
− Reduced Design Size: Went from >2,000

Logic Elements (LEs) to <200 LEs

© 2004 Altera Corporation

CPRI Architectural SolutionCPRI Architectural Solution

UMTS
Framer
UMTS

Framer

© 2004 Altera Corporation

CPRI

UMTS
Framer
UMTS

Framer

HDLC
Controller

HDLC
Controller

Memory BufferMemory Buffer

Memory BufferMemory Buffer

CPRI

CPRI Interface With Smart PeripheralCPRI Interface With Smart Peripheral
TransmitTransmitAvalon

FIFOFIFO UMTS
Framer
UMTS

Framer

Read Buffer
CRC-16
Bit Stuff
Frame

Read Buffer
CRC-16
Bit Stuff
Frame

D
M
A

D
M
A

Memory
Buffer

Memory
Buffer

© 2004 Altera Corporation

CPRI

01111110 User Data 01111110FCS

Start of Frame End of Frame

Data Frame to UMTS Framer

Bit Stuffed

FIFOFIFO UMTS
Framer
UMTS

Framer

Frame
Bit Strip
CRC-16

Write Buffer

Frame
Bit Strip
CRC-16

Write Buffer

D
M
A

D
M
A

Memory
Buffer

Memory
Buffer

Nios IINios II

CPRI

Avalon Receive

Benefits of this MethodologyBenefits of this Methodology
Simplifies Core
− Uses Nios II CPU as a System Component
− Uses Nios II CPU (Already Present) + Simple

Peripherals
Removes Clocking Constraints
− No Re-Timing for UMTS Framer Necessary

Abstracts the Hardware
− Software Engineer-Friendly
− Only Design High-Level Drivers Once

© 2004 Altera Corporation

Related DocumentationRelated Documentation
Application Notes & Tutorials
− AN 333: Developing Peripherals for SOPC

Builder
− AN 184: Simultaneous Multi-Mastering with the

Avalon Bus
− Tutorial: Simultaneous Multi-Mastering with

the Nios Processor

© 2004 Altera Corporation

© 2002© 2004 Altera Corporation

Thank You !Thank You !

