

© 2002

Timing-Driven Design for
Optimal Area & Performanceal Area & Performance

October 2003October 2003

Timing-Driven Design for
Optim

AgendaAgenda
Synplicity Overview
Synplicity’s Solutions
Identify Demo

Synplicity, Inc.Synplicity, Inc.

EDA software company founded in 1994
Unique company philosophy
− Best results don’t have to come from hard to use tools
− Flexible and easy to work with company
− Dedicated to providing the best technical support

FPGA expertise
− Synthesis
− Physical Synthesis
− Debug

Simply Better ResultsSimply Better Results®®

Top Ranking in Customer SatisfactionTop Ranking in Customer Satisfaction

Base = # who have purchased or
used a product from the vendor

Customer
Satisfaction
June 2003

*base too small (20 or fewer
responses); interpret data with caution

84%
82%

79%
79%

78%
77%

74%
71%

70%
70%
69%
69%

64%
61%

60%
60%
60%
59%

53%
51%

50%
50%
50%
50%
49%

44%
42%

35%
34%

25%

Novas Software
*Get2Chip
Synplicity

Verplex Systems
Synopsys

Nassda
Mentor Graphics

*0-In Design Automation
Cadence Design Systems

Denali Software
Verisity

Industry Average
*Forte Design Systems

*Sequence Design
Agilent EEsof EDA

*Ansoft
*Tera Systems

*TransEDA
*TannerEDA

*Magma Design Automation, Inc
*Analog Design Automation

*Axis Systems, Inc.
*Barcelona Design

*CoWare
Exemplar Logic
*Summit Design

*Synchronicity
*Monterey Design Systems, Inc.

*Aldec Corporation
*Aptix

Synplicity’s Design SolutionsSynplicity’s Design Solutions

Top FPGA Design ChallengesTop FPGA Design Challenges

As described by today’s FPGA designers

Achieving Performance Goals
Timing Closure
Productivity
Debug
Prototyping

Achieving Performance Goals
(Synplify & Synplify Pro)
Achieving Performance Goals
(Synplify & Synplify Pro)

Performance GoalsPerformance Goals

Synplify (Mappers) are architecture aware
Optimizations are performed based on timing
constraints
−Hierarchical boundary optimization
BEST

™
algorithms extract high level

components
−RAM’s, FSM’s, wide muxes, adders/multipliers,

etc.
−Technology-specific optimizations made after

extraction

Set Proper Timing Constraints Set Proper Timing Constraints

Synplify and Synplify Pro are timing
driven
− Optimization decisions are made based

on the timing constraints
− Not simply optimizing for performance

or area
− Saves on device cost by using the

smallest part while meeting your timing
Forward annotation to P&R
− Timing information is forward annotated

to Quartus place & route
− More detailed and accurate timing

constraints yield the best results

Basic Clock OptionsBasic Clock Options

Frequency / Period
− Enter one (displayed in bold)
− Others are automatically derived (regular font)

Clock Group
− Default clock group: default_clkgroup
− Only paths between clock domain from the same clock group

are analyzed
Use real constraints for your design – don’t over
constrain
To optimize strictly for area set frequency to 1MHz

SCOPE®

Advanced Clock OptionsAdvanced Clock Options

Rise, Fall, Duty Cycle
− Use Clock Rise/Fall to specify rising and falling edges

duty cycle automatically derived
− OR Specify the clock cycle as a % of the clock period

rise reset to 0, fall automatically derived
− Default is Rise=0, Fall=period/2, Duty Cycle=50%

Route
− Use to shrink the effective clock period without affecting

the clock constraint forward-annotated to Quartus P&R
Virtual Clock
− Use for external clock signals clocking top-level ports

IP SupportIP Support

Altera Clearbox support allows
Synplify to perform realistic timing
analysis, optimizations, and reporting
−Synplify Pro only

Mixed language support
−Synplify Pro only

Forward Annotation to QuartusForward Annotation to Quartus

Timing constraints forward annotated to
Quartus Place & Route
− Frequency
− Duty Cycle
− I/O Delay
− Multi-Cycle Paths
− False Paths & max_delay path
− Clock Relationships
− Pin Assignments

Accomplished through .vqm & .tcl

Timing Closure
(Amplify Physical Optimizer)
Timing Closure
(Amplify Physical Optimizer)

Routing Governs PerformanceRouting Governs Performance

Routing
Delay
70%

Logic
Delay
30%

Must incorporate physical information into synthesis
The larger the design, the larger the problem

Amplify Physical SynthesisAmplify Physical Synthesis
Simultaneous
placement and
optimization
Integrated
Design
Planning guides
physical
optimization
Boosts
performance an
average of 20%
over synthesis

When To Use AmplifyWhen To Use Amplify

For fast timing closure

When you need the highest possible performance

Need to reduce a speed-grade for cost

When the majority of delay is in routing

Amplify – Interactive FlowAmplify – Interactive Flow

RTL Block Diagram CreatedRTL Code
Compile

Identify Critical Paths

Physical Constraints
Feedback on Region Utilization

and Design Rule Errors

Physical Synthesis

Placement
Physically
Optimized

Netlist

Quartus P&R

Types of Physical ConstraintsTypes of Physical Constraints

Module Level Physical Constraints
− Logical module
− Use when critical paths are within logical modules

Detailed Level Physical Constraints
− Point to point critical path
− Use when critical paths cross module boundaries

OR

− When meeting timing within a module becomes
critical

Benefits of Physical SynthesisBenefits of Physical Synthesis

Synthesis with physical constraints provides
− Simultaneous placement and logic optimization
− Placement based optimization
− Register replication for high fanout nets across region

boundaries
− Register tunneling across boundaries
− Replication and re-assignment of registers that drive

primary I/Os
− Placement of logic constrained to regions

Value of Using the Best Synthesis Value of Using the Best Synthesis

Saves you money

Makes your products more competitive
− Better performing chips make a better product
− Reaching timing goals quickly gets you to market sooner

FPGA
-7

FPGA
-6

FPGA
-5

$100 / chip $120 / chip $144 / chip

20% premium
for 12%-15%
performance

Savings are huge for volume applications

Design Productivity
(Synplify & Synplify Pro)
Design Productivity
(Synplify & Synplify Pro)

Core Synthesis Technology Core Synthesis Technology

BEST™ – Behavior Extracting Synthesis Technology®

− Infers and optimizes behavior from RTL
− Optimizes across hierarchical module boundaries
− Integrated physical synthesis algorithms
− Multi-million gate capacity
− Extremely FAST - Unparalleled runtimes

Behavior

RTL

Gates

Compile Optimize Physical Synthesis Map

Synplicity’s approach

Others approach

Managing Complex DesignsManaging Complex Designs

MultiPointMultiPoint™™
A Powerful Synthesis Flow for
− Incremental design using Synplify Pro or Amplify
− Unlimited gate capacity
− Minimal scripting effort
− No compromise Quality of Results
− Altera Logic Lock flow

MultiPoint Flow

Project View

Define compile
points and compile
point constraints

TOP

A

DC

B

First Run

Second Run

MultiPoint SynthesisMultiPoint Synthesis
Difference Based Incremental Synthesis

Re-synthesize a locked Compile Point module for:
A logic change in your RTL code
Changes to constraints
• Timing constraints change in the .sdc or Project View
• Project settings change

• FSM Compiler or Explorer
• Retiming
• Pipelining

Re-synthesis is not based on time stamp

Debug
(Identify)
Debug
(Identify)

Evolution of Hardware DebugEvolution of Hardware Debug

Embedded
HDL AnalyzerIdentify

(Simulator-Like)

Embedded
Logic AnalyzerSignalTap

(Logic Analyzer-Like)

Logic Analyzer

Identify RTL DebuggerIdentify RTL Debugger

Debug and
instrument FPGA
directly in RTL code
Provides internal
visibility in the target
system at full speed
Trigger on Data Path
and Control Path
Standard VCD
Output for Waveform
Display

Design Flow with IdentifyDesign Flow with Identify

RTL
SourceRead RTL into Identify

Instrumentor
Compile and map Identify
output in Synplify
FPGA Place & Route
Use Identify Debugger to
view data in FPGA

Identify
Instrumentor

Synplify Compile

Synplify Map

Quartus P&R

Identify Debugger

Instrumenting for DebugInstrumenting for Debug

Add Signal
Visibility

Design
Hierarchy

TCL
Scripting
Interface

Identify Instrumentor

Debugging Data From FPGADebugging Data From FPGA

Actual data from
FPGA

Click to enable
triggers

Automate Debugger
with Script

IICE JTAG

Identify Debugger

RTL Display of Triggers and
Sampled Data
RTL Display of Triggers and
Sampled Data

Full support of
symbolic values
Control Path triggers
as breakpoints
Data Path triggers
as watch points
Configurable
counters and state
machine triggering

Data PathControl Path

Sampled Data
From Chip

Trigger

Setting Triggers on Data PathSetting Triggers on Data Path

ex : PROCESS (a, b) BEGIN

CASE curr_state IS

WHEN read_state =>

IF b = “100110” THEN

o <= “110”;

END IF;

WHEN OTHERS =>

o <= “000”;

END CASE;

END PROCESS;

Setting Triggers on Control PathSetting Triggers on Control Path

ex : PROCESS (a, b) BEGIN

CASE a IS

WHEN read_state =>

IF b = “100110” THEN

o <= “110”;

END IF;

WHEN OTHERS =>

o <= “000”;

END CASE;

END PROCESS;

a == read_state

1

a == read_state
&&

b == “100110”

2

3

a != read_state

Intelligent In-Circuit Emulator (IICE
™

)Intelligent In-Circuit Emulator (IICE
™

)

Inserted logic used by Instrumentor & Debugger
Uses dedicated JTAG pins or user-selected pins
Includes controller, triggering logic, & data storage
buffer

JTAG
Control/Data

IICE

Data
Multiplexer

Comm
Controller

Addr
Logic

Sample
Buffer

Trigger
Logic

a1
1

a2
2

3
a3

b1
5

a1
1

a2
2

3
a3

b1
5

a1
1

a2
2

3
a3

b1
5

S1

S2

D

C ENB

Multiplexer

Control/Data

Probe

Triggering Logic and BufferTriggering Logic and Buffer

Circular Sample Buffer in HW

Trigger
Logic

HDL
Signals

State
Machine/
CounterTriggers

Trigger values changed dynamically from debugger
Trigger halts sampling, Not hardware
Triggers pipelined, only 2 gate delay

Customer SuccessCustomer Success
Foundry Networks

“In just our first six weeks with the product, we used
it to find and fix bugs in three of our designs. In
each case the process was completed within a
day. It would have taken 10 to 20 times longer
using traditional test-bench methods.”

-Richard Grenier
Director of ASIC Development

Multi-FPGA Prototyping
(Certify)
Multi-FPGA Prototyping
(Certify)

Higher Speed & Lower Cost using
FPGA Prototypes
Higher Speed & Lower Cost using
FPGA Prototypes

HDL
Cycle-
based

Hardware-
accelerated
simulation

Multi-FPGA
prototypes

Emulation

CertifyCertify
enabledenabled

prototypesprototypes

$1,000

C
os

t (
$0

00
)

$750

$500

$250

10 100 1,000 10,0001 100,000
10 -110 -210 -310 -410 -510 -6 Chip = 1

Performance (K Cycles/Sec)

Prototyping ChallengesPrototyping Challenges

ASIC RTL Code
− Gated Clocks
− DesignWare™

Performance
− Video and signal processing applications

Partitioning
− Pin utilization

DesignWare is a trademark of Synopsys, Inc.

FPGA-Based ASIC PrototypesFPGA-Based ASIC Prototypes

Highest performing
ASIC prototypes for
− Functional verification
− HW/SW co-verification

Automatic RTL
partitioning, I/O
sharing, and more
Supports all
prototyping hardware
including off-the-shelf
boards
Adopted by Philips,
TI, LSI Logic and
others

Certify®

SummarySummary

The Market Leader in FPGA
synthesis & physical synthesis
− Best Quality of Results
− Unmatched Productivity

A Leader in EDA innovation
− First in FPGA physical synthesis
− Innovative, at-speed, RT-Level debug

technology
− Unique multi-FPGA prototyping system

Top-ranked customer service and
technical support

FPGA Synthesis
Market Share

Source: DataQuest,
October, 2002

Synplicity

Mentor
Synopsys
Other

54%

2%

7%

37%

END

	Timing-Driven Design for Optimal Area & Performance
	Agenda
	Synplicity, Inc.
	Top Ranking in Customer Satisfaction
	Synplicity’s Design Solutions
	Top FPGA Design Challenges
	Achieving Performance Goals(Synplify & Synplify Pro)
	Performance Goals
	Set Proper Timing Constraints
	Basic Clock Options
	Advanced Clock Options
	IP Support
	Forward Annotation to Quartus
	Timing Closure(Amplify Physical Optimizer)
	Routing Governs Performance
	Amplify Physical Synthesis
	When To Use Amplify
	Amplify ? Interactive Flow
	Types of Physical Constraints
	Benefits of Physical Synthesis
	Value of Using the Best Synthesis
	Design Productivity(Synplify & Synplify Pro)
	Core Synthesis Technology
	Managing Complex Designs
	MultiPoint Synthesis
	Debug(Identify)
	Evolution of Hardware Debug
	Identify RTL Debugger
	Design Flow with Identify
	Instrumenting for Debug
	Debugging Data From FPGA
	RTL Display of Triggers and Sampled Data
	Setting Triggers on Data Path
	Setting Triggers on Control Path
	Intelligent In-Circuit Emulator (IICE™)
	Triggering Logic and Buffer
	Customer Success
	Multi-FPGA Prototyping(Certify)
	Higher Speed & Lower Cost using FPGA Prototypes
	Prototyping Challenges
	FPGA-Based ASIC Prototypes
	Summary

