

Application Note

Designing State Machines for FPGAs

Introduction

The traditional methodology for designing state machines has
been to draw a state diagram, map the states into the
minimum number of register bits, and determine the next
state function for each register bit. The minimum number of
register bits needed can be determined by rounding up the
natural log of the number of states. This methodology results
in a minimum number of registers but usually requires wide
gating and complicated logic to encode the next state bit.
This scheme is necessary to implement state machines using
programmable logic devices (PLDs) because of the PLDs
inherent lack of registers. Because FPGAs do not have this
limitation, other approaches are used for efficient state
machines.

This application note will discuss techniques for efficiently
implementing state machines by using one-hot-encoding for
Actel FPGAs.

Sample One-Hot-Encoding

One-hot-encoding is an effective approach because it takes
advantage of the abundance of registers. The state diagram of
a sample state machine is illustrated in Figure 1. This state
machine is the control section of a four-channel DMA
controller for Actel FPGAs. The state machine contains six
states, seven inputs, and five outputs. Each circle represents
a different state, and each arrow represents a transition
between states. Inputs that cause state transitions are listed
adjacent to the state transition arrows. Control outputs are
labeled along with the states inside the circles. For example,
in state S2, the state machine asserts the CNTD and CMREQ
outputs. If the MACK input is low, the state machine remains
at state S2. If the MACK input is high, the state machine goes
to state S3 and asserts the CE output in the process.

State Transition Equations

The next step is determining the logic to generate the state
sequence. For one-hot-encoding implementations, assign
each state to a separate register and write a state transition
equation for each register. The state diagram in Figure 1
shows that state S0 can be realized when state S4 is asserted
and the input CONT is low, or it remains at state S0 if all four
inputs—A, B, C, and D—are low. Therefore, the transition
equation of state S0 can be written as

S0 := /A*/B*/C*/D*S0 + /CONT*S4

Similarly, state S1 can be achieved when state S0 is asserted
and any one of the four inputs—A, B, C, or D—is high, or it
remains at the same state (S1) if the input PBGNT is low. The
transition equation of state 1 can be derived as

S1 := (A+B+C+D)*S0 + /PBGNT*S1

The complete state transition equations for the state
machine are listed in Table 1. Note that state S3 will go to
state S4 unconditionally; therefore, the transition equation
for state S3 can be written as S3 := S4.

Output Equations

Once the state transition equations are determined, the
output equations can be written by encoding the states. In
some cases, the output is active only in one state. Therefore,
the output is simply a function of that state. For example, CE
is active only in state S3, so the output equation for CE is
simply CE = S3. Other output may be active in more than one
state. The output equations can be written simply as
functions of those states. For example, CMREQ is active in
state S2 as well as state S5. Therefore, the output equation is

CMREQ = S2 + S5

Table 2 lists the output equations of the state machine.

The state machine can be captured using schematic entry, or
it can be automatically mapped by using synthesis tools such
as Actel ACTmap VHDL Synthesis. The completed VHDL file
is shown in Figure 2. A reset signal RST has been added to
initialize the circuit.

Table 1 • State Machine Transition Equations

S0 := /A*/B*/C*/D*S0 + /CONT*S4;

S1 := (A+B+C+D)*S0 + /PBGNT*S1;

S2 := PBGNT*S1 + /MACK*S2;

S3 := /MACK*S2 + MACK*S3;

S4 := S3;

S5 := CONT*S4 + /MACK*S5;

Table 2 • Output Equations

PBREQ = S1;

CLD = S4;

CNTLD = S2;

CMREQ = S2 + S5;

CE = S3;
September 1997 5-89
© 1997 Actel Corporation

Figure 3 shows the schematic of the state machine
implementation using the one-hot-encoding approach in the
ACT 3 family. The circuit requires 18 logic modules after
combining timing for the A1425A-2, as shown in Figure 4.

Summary

A summary of the bit-per-state methodology is as follows:

1. Draw a state diagram.

2. Assign each state to a separate register.

3. Write a state transition equation for each register.

4. Derive output equations based on active states.

Larger state machines can be implemented using this
technique by distributing control to several smaller state

machines and using a single master machine to coordinate
activities among the state machines. This usually results in
higher-performance designs. It is also easier to design and
debug simpler and smaller state machines.

Shift Register Design

Shift registers with serially controlled data inputs and
parallel outputs can be used as powerful controlled sequence
generators. As a result, shift registers can be used in
high-speed state machine designs.

For this application, a shift register sequentially shifts a
single logic high signal while the rest of the output bits are
low. This function can be implemented by simply connecting
the output of the one flip-flop to the input of the next flip-flop
and the output of the last flip-flop back to the input of the

Figure 1 • Four-Channel DMA Controller State Diagram (Control Section)

S0

S1

S2

S3

S4

S5

PBGNT

MACK

CONT

MACK

PBREQ

CNTLD, CMREQ

CE

CLD

CMREQ

PBGNT

MACK

CONT

MACK

A + B + C + D

A B C D

RESET
5-90

Designing State Machines for FPGAs

--library ieee;
--use ieee.std_logic_1164.all;
entity DMASM is
 port (A,B,C,D: in bit;
 PBGNT, MACK, CONT : in bit;
 RST, CLK : in bit;
 PBREQ, CMREQ, CE, CNTLD, CLD : out bit);
 end DMASM;

architecture BEHAVE of DMASM is
 type STATE is (S0, S1, S2, S3, S4, S5);
 signal CURRENT_STATE, NEXT_STATE: STATE;
begin

SEQ: process (RST, CLK)
begin
 if (RST = '0') then
 CURRENT_STATE <= S0;
 elsif (CLK' event and CLK = '1') then
 CURRENT_STATE <= NEXT_STATE;
 end if;
end process;

COMB: process (CURRENT_STATE, A, B, C, D, PBGNT, MACK, CONT)
begin

 PBREQ <= '0';
 CMREQ <= '0';
 CE <= '0';
 CNTLD <= '0';
 CLD <= '0';
case CURRENT_STATE is

 when S0 =>
 if (A = '1' or B = '1' or C = '1' or D = '1') then
 NEXT_STATE <= S1;
 else
 NEXT_STATE <= S0;
 end if;

 when S1 => PBREQ <= '1';
 if (PBGNT = '1') then
 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S1;
 end if;

 when S2 => CNTLD <= '1'; CMREQ <= '1';
 if (MACK = '1') then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S2;
 end if;

 when S3 => CE <= '1';
 NEXT_STATE <= S4;

 when S4 => CLD <= '1';
 if (CONT = '1') then
 NEXT_STATE <= S5;
 else
 NEXT_STATE <= S0;
 end if;

 when S5 => CMREQ <= '1';
 if (MACK = '1') then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S5;
 end if;
 end case;
 end process;
end BEHAVE;

Figure 2 • Complete State Machine VHDL file
5-91

Figure 3 • State Machine Schematic in ACT 3 Family

Figure 4 • State Machine Timing Using A1425A-2

Worst-Case Path

(from A, B, C, D
Registered Inputs)

= tCO + tRD2 + tPD + tRD1 + tPD + tRD1 + tSUD

= 2.3 + 1.4 + 2.3 + 1.0 + 2.3 + 1.0 + 0.6

= 10.9 ns

DF1 NAND4D AOI
5-92

Designing State Machines for FPGAs

first flip-flop. Table 3 shows the function table of an 8-bit
serial shift register. The width of the shift register is
expandable by serially adding more flip-flops to the last stage.
Figure 5 shows the schematic of an 8-bit shift register. Note
that the shift register is designed so that it can be set to a
known state with a reset signal.

State Machine Implementation

The state machine implementation is best illustrated by an
example. The sample state machine has six states with three
output bits. The sequence is organized such that only one
output bit changes state for every clock pulse. Figure 6 shows
the state diagram of the state machine.

Table 3 • 8-Bit Shift Register Function Table

RST CLK Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 X 1 0 0 0 0 0 0 0

1 ≠ 0 1 0 0 0 0 0 0

1 ≠ 0 0 1 0 0 0 0 0

1 ≠ 0 0 0 1 0 0 0 0

1 ≠ 0 0 0 0 1 0 0 0

1 ≠ 0 0 0 0 0 1 0 0

1 ≠ 0 0 0 0 0 0 1 0

1 ≠ 0 0 0 0 0 0 0 1

1 ≠ 1 0 0 0 0 0 0 0
5-93

Figure 5 • Eight-Bit Shift Register Schematic
5-94

Designing State Machines for FPGAs

A six-state state machine requires a six-bit shift register with
one register per state. Using this shift register determines the
state sequence map of the state machine. The state machine
creates the three output bits based on decoding the outputs
of the shift register. The decoding logic is greatly minimized
because there is only one output bit asserted in any state.
Table 4 shows the state table of the state machine. When the
outputs of the state machine are 001, the shift register
outputs are 000010. In this state, Q5, Q4, Q3, Q2, and Q0 are
all low and Q1 is high. Therefore, the state machine uses only
Q1 for the decoding logic. The logic for the state machine
outputs is based on the shift register outputs. Out0 is high
when Q1 or Q2 or Q3 is high, Out1 is high when Q2 or Q3 or Q4
is high, and Out2 is high when Q3 or Q4 or Q5 is high. The
complete decoding logic equations are the following:

Out0: Q1 + Q2 + Q3

Out1: Q2 + Q3 + Q4

Out2: Q3 + Q4 + Q5

Figure 7 shows the schematic diagram of the state machine
using ACT 2 or ACT 3 macros. Note that the decoding logic
requires only one level of logic to implement. Thus, using a
shift register to implement state machines improves
performance significantly.

Conclusion

To achieve the high performance possible with FPGAs, new
register-rich techniques are needed. Two effective
approaches include bit-per-state and shift register decoding.
The user can manually implement these techniques or select
FPGA-friendly algorithms with optimization tools such as the
Actel ACTmap VHDL Synthesis tool.

Figure 6 • State Diagram of State Machine

000

111

001

011

100

110

Table 4 • State Table for Example State Machine

Shift Register Outputs
State Mac hine

Outputs

Q5 Q4 Q3 Q2 Q1 Q0 Out2 Out1 Out0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1 1

0 1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 0
5-95

Figure 7 • State Machine Schematic
5-96

	Designing State Machines for FPGAs
	Introduction
	Sample One-Hot-Encoding
	State Transition Equations
	Output Equations
	Summary
	Shift Register Design
	State Machine Implementation
	Conclusion

