
Application Note
ProASICPLUS PLL Dynamic
Reconfiguration Using JTAG

Introduction

The ProASICPLUS family devices provide two clock
conditioning circuits. The clock conditioning circuits are
located on the east and west sides of the device with PLL
cores as the main component of each circuit. The clock
conditioning circuits consist of delay and divider blocks to
generate the desired outputs from the input reference
clock. For more information on the clock conditioning
circuits, refer to Actel’s Using ProASICPLUS Clock
Conditioning Circuits application note.

The delay and divider blocks are configured with default or
user-defined values during the instantiation of the PLL
macros in the design. The PLL cores can be configured both
statically and dynamically. The static configuration is
performed during the device programming with the
configuration parameters identified in the design. However,

the configuration of the PLLs can be modified during the
operation of the device. Using PLL dynamic reconfiguration,
a user can adjust his/her design's timing performance
without the need to reprogram the device. JTAG pins serve
as the ports for transferring the configuration data into the
PLL cores during device operation. Using JTAG for PLL
configuration also saves user I/O pins and logic.

PLL Macro Structure

The clock conditioning circuits on each side of the device
contain a MUX architecture that transfers the configuration
data into the PLL core. Figure 1 illustrates a simplified
block diagram of the MUX architecture in the clock
conditioning circuit.

Figure 1 • The Configuration MUX Architecture

Flash
Programming
Configuration

Bits

Shift and
Update

Registers

Control
Bits to PLL

27

1 0

27

27

SDIN
SDOUT

SCLK
SSHIFT

SUPDATE

MODE
August 2002 1
© 2002 Actel Corporation

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
The control bits configure the PLL core. The control bits are
either Flash configuration bits or the bits from the
configuration register; the selection is made using the
MODE pin shown in Figure 1 on page 1. The Flash
configuration bits are the configuration bits associated with
programmed Flash switches. These bits are used when the
PLL is in static configuration mode. Once the device is
programmed, these bits cannot be modified. However, the
configuration register can be loaded with new configuration
data without reprogramming the device if the MODE pin is
at logic "high." There are 27 control bits to configure the
different functions of the PLL core. The configuration
register can be serially loaded with the new configuration
data and programmed into the PLL using the following
ports:

• SDIN: The configuration bits are serially loaded into the
shift register through this port. The LSB of the
configuration data bits should be loaded first. The
minimum setup time requirement for SDIN with respect to
the shift clock is 3ns. The minimum hold time requirement
is 0ns.

• SDOUT: The shift register contents can be shifted out (LSB
first) through this port using the shift operation. SDOUT
maximum access time is 3ns after the positive edge of the
shift clock.

• SCLK: This port should be driven by the shift clock. The
maximum allowed frequency of SCLK is slightly higher
than 16 MHz.

• SSHIFT: The active-high shift enable signal should drive
this port. The configuration data will be shifted into the
shift register if this signal is high. Once SSHIFT goes low,
the data shifting will be halted. The minimum setup and
hold time requirements for the SSHIFT signal are 3ns and
0ns, respectively.

• SUPDATE: The SUPDATE signal is an active-high signal.
This signal is used when the shifting is completed, and the
user wants to configure the PLL with the new
configuration bits.

Figure 2 is the timing diagram for the above ports.

Figure 2 • Timing Diagram

SCLK

SDIN

SDOUT

SSHIFT

SUPDATE

tperiod

tperiod

tSDIN_SETUP

tSDIN_SETUP

tSDOUT_ACCESS

tSDOUT_ACCESS

tSSHIFT_SETUP

tSSHIFT_SETUP

t SUPDATA

t SUPDATA

(Min)= 6 ns

(Min)= 3 ns

(Max)= 3 ns

(Min)= 3 ns

(Min)= 2 ns
2

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
By toggling SUPDATE, the contents of the configuration
register will be latched and available at the input of the
MUX architecture. To update the latched data with the
contents of the shift register, the SUPDATE signal should be
asserted for at least 2ns. The SUPDATE signal MUST be low
during any clock cycle where SSHIFT is active. After the
assertion of SUPDATE, it must go back to the low state until
a new update is required.

Since the contents of the configuration shift register are
latched into the input of the MUX, modifying the contents of
the shift register via another shifting process will not affect
the current configuration of the PLL unless the SUPDATE
signal is toggled again.

Figure 3 illustrates the architecture and operation of the
configuration shift register.

In order to access the configuration ports of the shift
register (SDIN, SDOUT, SSHIFT, etc.), the user should
instantiate the PLL macro PLLCORE in his design with the
appropriate ports.

Actel recommends that users choose ACTgen to generate
PLL macros with the required ports for dynamic
configuration. In order to do so, the user should select
"Dynamic" in the Configuration section of the ACTgen PLL
macro generation GUI. This will generate both the PLL core
and the configuration shift register/control bit MUX of
Figure 3. The combined structure is shown in Figure 4 on
page 4.

Figure 3 • Architecture and Operation of the Configuration Shift Register

D

EN

Q D

EN

Q

SSHIFT
SCLK

SUPDATE

SDIN

SDOUT

PARALLEL_OUT

27

27

27

27-bit
Shift Register

Scan Register
Configuration Bits

Flash
Configuration

Bits

Control
Bits

NVM/
Reg
 3

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
Even if dynamic configuration is selected in ACTgen, the
user still must specify the static configuration data for the
PLL. The specified static configuration is used whenever the
MODE signal is set to low and the PLL is required to
function in the static mode. The static configuration data
can be used as the default behavior of the PLL when
required.

However, as specified in the ProASICPLUS Flash Family
FPGAs datasheet, the legal combinations for the delay and
the divider block values in the PLL structure are limited. All
the legal values for the delay and the divider blocks and the
feedback path multiplexing configuration signals are
described in Actel’s Using ProASICPLUS Clock
Conditioning Circuits application note.

Users must familiarize themselves with the architecture of
the PLL core and its input, output, and configuration ports
in order to implement the desired delay and output
frequency in the PLL structure. Figure 5 shows a simplified
model of the ProASICPLUS PLL with configurable blocks and
switches.

Each group of control bits is assigned a specific location in
the 27-bit configuration shift register. Table 1 on page 5
shows the shift register structure.

Figure 4 • Dynamic ACTgen Selection of PLLCORE

Figure 5 • PLL Block Configuration via Control Bits

SUPDATE

SSHIFT

SCLK

SDIN

MODE

SDOUT

PLL Control PLL "Core"
27

Control Bits

/u/n

/m

/v

270
180
90
0

P.D. Filter VCO

Delay Line

Emulated
System
Delay

Lock Detect

Global MUX
B Out (f)in

Global MUX B Out (f)in

PLLFIN

PLLBIN

External
Feedback

Global MUX B In

Global MUX A In

Global MUX A Out
Delay Out

Delay In

5

1

2

2

2

2

3

(1)
(7)
(6)
(5)
(4)
(2)

4

C<4:0>

5C<10:5>

C<21:20>

C<12:11>

C<14:13>C<16:15>
C<25:22>

C<26:0>

C<19:17>

C<26>
(0)

(1)

(1)

(2)

(3)

(1)

(2)

(3)

Control Bits
4

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
Loading the Configuration Register
The most important part of PLL dynamic configuration is to
load the shift register properly with the configuration bits.
There are three different ways to access and load the
configuration shift register:

• JTAG Interface

• Logic Core

• Specific I/O Tiles

The JTAG interface, described in the JTAG Interface
section, is the most straightforward method. No additional
I/O pins are required, since the APA JTAG TAP controller is
used to control the loading of the PLL configuration shift
register. If the logic core is employed, the user must design
a module to provide the configuration data and control the
shifting and updating of the PLL configuration shift
register. In effect, this is a user-designed TAP controller,
which requires additional chip resources. If specific I/O
tiles are used for configuration, the user must provide the
external equivalent of a TAP controller. This does not
require additional core resources but does use pins.

JTAG Interface

ProASICPLUS devices provide a user-interface macro
between the JTAG pins and the device core logic. This
macro is called UJTAG. A user should instantiate the UJTAG
macro in his design in order to access the configuration
register ports via the JTAG pins. Figure 6 shows the UJTAG
block and its ports.

The UJTAG Interface

The ProASICPLUS family provides an 8-bit instruction
register, and most of these opcodes are available to users.
The UJTAG interface provides the current instruction
register value from the TAP and a number of data path
control signals. Using these signals, simple user-defined
logic can allow JTAG access to internal design registers
(including the PLL configuration shift register). Note that
the logic required for controlling the PLL requires about 17
tiles (excluding the instruction decoding).

The TDI, TMS, TDO, TCK, and TRST ports of UJTAG are only
provided for design simulation purposes and should be
treated as external signals in the design netlist. However,
these ports should NOT be connected to any input or output
buffers in the netlist. Table 2 on page 6 indicates all the
UJTAG ports and their descriptions.

The URSTB will be asserted at power up, and a
power-on-reset signal resets the TAP. The URSTB will stay
asserted until the TAP is accessed externally.

Table 1 • Configuration bits in the Shift Register

Configuration Bits Signal Description

26 XDLYSEL Mask-programmable delay select MUX

25-22 FBDLY[3:0] Delay line tap select MUX

21-20 FBSEL[1:0] Feedback source MUX

19-17 OBMUX[2:0] "B" output MUX

16-15 OAMUX[1:0] "A" output MUX

14-13 OADIV[1:0] "A" output divider (/v)

12-11 OBDIV[1:0] "B" output divider (/u)

10-5 FBDIV[5:0] Feedback signal divider (/m)

4-0 FINDIV[4:0] Input clock driver (/n)

Figure 6 • UJTAG Macro Block

UTAG

TDO
TDI
TMS
TCK
TRST

UIREG0
UIREG1
UIREG2
UIREG3
UIREG4
UIREG5
UIREG6
UIREG7

URSTB

UDRSH
UDRCAP

UDRCK
UDRUPD

UTDI
UTDO
 5

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
Actel recommends designers use a global segment for
UDRCK to avoid skew problems (For more information on
global spines in Flash products please refer to the Efficient
Use of ProASIC Clock Trees application note).

Shifting the Configuration Data

In order to shift the configuration data into the PLL
configuration shift register, data should be transferred from
the user JTAG (UJTAG) block into the PLL block. For
appropriate data transfer from the ProASICPLUS TAP into
the PLL, a user-defined interface block should be
implemented in the design. The JTAG ports should be
connected to the TDI, TDO, TMS, TCK, and TRST inputs of
the UJTAG interface. The outputs of the UJTAG interface

should be connected to the interface block. This allows the
JTAG TAP controller to control the appropriate data
transfer from UJTAG into the PLL.

One of the UJTAG output ports is UIREG [7:0]. This 8-bit bus
carries the contents of the JTAG Instruction Register. The
user-defined interface block must always decode the
instruction register for the ‘loading configuration data'
instruction (this opcode can be defined by the user and can
be any value between 16 and 127 inclusive, the rest are
reserved codes), and the user's interface block should
remain synchronous with the TAP controller and PLL
macros. Figure 7 on page 8 shows the interconnection of the
TAP controller with the UJTAG and the PLL macro.

As previously mentioned, the opcode for PLL dynamic
configuration is user selectable. As an example, consider the
following sequence of opcodes:

Dynamic: 21Hex (Switch PLL to dynamic mode)

LOAD_PLL_CONFIG: 20Hex (Start Configuring the PLL
configuration shift register)

Figure 8 on page 8 illustrates an example of a simple user
interface implementation for configuring the PLL
dynamically.

The following is a sample of HDL code to implement the
design in Figure 8 on page 8:

Verilog

‘define Load_PLL_Config 8’h20

‘define Dynamic 8’h21

module pllint (UIR, UTDO, UTDI, UDRSH, UDRUPD,
UDRCAP, UDRCK, URSTB,

SDIN, SDOUT, SSHIFT, SCLK, SUPDATE,
MODE);

input [7:0] UIR;

input UTDI, UDRSH, UDRUPD, UDRCAP, UDRCK,
URSTB;

output UTDO;

output SCLK, SUPDATE, SSHIFT, SDIN, MODE;

input SDOUT;

reg SHREG;

assign SDIN = UTDI;

assign SUPDATE = (UIR == ‘Load_PLL_Config) &&
UDRUPD;

assign SSHIFT = (UIR == ‘Load_PLL_Config) &&
UDRSH;

assign SCLK = UDRCK;

reg UTDO;

always @(posedge UDRCK)

begin

 if (UDRCAP)

 begin : captureDR

if (UIR == ‘Dynamic)

SHREG <= MODE;

else

SHREG <= 0;

end else if (UDRSH)

begin : shiftDR

SHREG <= UTDI;

end

end

always @(UIR or SHREG or SDOUT)

begin : tdomux

Table 2 • UJTAG Interface Port Descriptions

UJTAG Port Description Notes

UIREG[7:0] TAP Instruction Register contents Current instruction

UTDI TAP TDI
UTDO User TDO output Sent to TAP TDO output MUX when IR is in user range
UDRSH Data shift enable High in Shift-DR TAP state
UDRUPD Data latch update High in Update-DR TAP state
URSTB TAP reset Low in Test-Logic-Reset TAP state

UDRCAP Data capture enable High in Capture-DR TAP state
UDRCK TCK
6

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
case (UIR)

 ‘Load_PLL_Config: UTDO = SDOUT;

 default: UTDO = SHREG;

endcase

end

LDC md (.Q(MODE), .CLR(!URSTB), .D(SHREG),
.EN(UDRUPD && (UIR == ‘Dynamic)));

endmodule

VHDL

library IEEE;

use IEEE.std_logic_1164.all;

-- Entity Declaration

entity pllint is

 generic (Load_PLL_Config: std_logic_vector
:= x"20"; Dynamic: std_logic_vector :=
x"21");

 port (UIR: in std_logic_vector(7 downto 0);

 UTDI, UDRSH, UDRUPD, UDRCAP, UDRCK,
URSTB: in std_logic;

 SDOUT: in std_logic;

 SCLK, SUPDATE, SSHIFT, SDIN, MODE:
out std_logic;

 UTDO: out std_logic);

end pllint;

-- Architecture Definition

architecture rtl of pllint is

 signal SHREG, t_MODE, temp_en: std_logic;

 component LDC

 port (Q : out std_logic;

 CLR : in std_logic;

 EN : in std_logic;

 D : in std_logic);

 end component;

begin

 SDIN <= UTDI;

 SUPDATE <= UDRUPD when (UIR =
Load_PLL_Config) else ’0’;

 SSHIFT <= UDRSH when (UIR = Load_PLL_Config)
else ’0’;

 SCLK <= UDRCK;

 MODE <= t_MODE;

 temp_en <= UDRUPD when (UIR = Dynamic) else
’0’;

captureDR: process (UDRCK)

begin

 if (UDRCK’event and UDRCK = ’1’) then

 if (UDRCAP=’1’) then

 if (UIR = Dynamic) then

 SHREG <= t_MODE;

 else

 SHREG <= ’0’;

 end if;

 elsif (UDRSH=’1’) then

 SHREG <= UTDI;

 end if;

 end if;

end process captureDR;

tdomux: process (UIR, SHREG, SDOUT)

begin

 case UIR is

 when Load_PLL_Config => UTDO <= SDOUT;

 when others => UTDO <= SHREG;

 end case;

end process tdomux;

md: LDC port map (Q => t_MODE,

 CLR => NOT URSTB,

 D => SHREG,

 EN => temp_en);

end rtl;

More functionality (additional opcodes) can be added to the
TAP controller. For example, by using additional opcodes,
the user can configure each PLL individually.

PLL Behavior During Configuration

The output of the configuration register is latched into the
PLL core. Therefore, the configuration of the PLL will not
change while shifting the new configuration data into the
register. In other words, the PLL configuration will not be
changed in the dynamic mode unless the UPDATE signal is
activated.

The PLL macro can switch between static and dynamic
modes. This provides a fixed initial state (static mode),
defined by Flash-programmed bits, for the user. For
example, in case of any functional error in dynamic
configuration, the PLL can always be reset to the static
configuration mode. Switching between the static and
dynamic modes is done using the MODE signal. When
MODE is high, the PLL will be in the dynamic mode.

Once the PLL macro receives a pulse on its SUPDATE port,
the new configuration bits will be loaded into the PLL core.
If the PLL is already locked with the previous configuration
 7

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
data, the LOCK output of the PLL will not go low when
updating the configuration bits. In other words, once the
PLL is locked for the first time, the LOCK output will remain
high during dynamic configuration. If the user needs to use
the LOCK signal as an enable input to the core logic to
disable the design while the PLL is unlocked, the PLL
should be reset first and then reconfigured. To reset the
PLL, the configuration shift register should be serially
loaded with "reset" inserted in the configuration word. Then
the user needs to pulse the SUPDATE signal to load the
configuration latches and to start the reset operation.
Setting bits 21 and 20 (FBSEL [1:0]) of the shift register to
“00” and loading the latches using UPDATE will set the PLL
in reset operation. After reset, the original configuration
word is reloaded into the shift register and another
SUPDATE pulse is used to load the configuration latches
and to end the reset operation. The user should note that a
reset operation is NOT required for dynamic configuration.
It is only used if the user needs to deactivate the LOCK
output during each reconfiguration.

Conclusion

The ProASICPLUS family devices provide two PLL blocks.
The PLL blocks can be configured during device operation,
thus eliminating the need for completely reprogramming
the device. The dynamic configuration bits are loaded into
the serial-in/parallel-out shift register, provided in the clock
conditioning circuit of each PLL. The contents of this shift
register are latched into the PLL block. The best approach
to serially load the configuration shift register is via a TAP
controller. The JTAG ports can be used along with the user
JTAG interface (UJTAG macro) to load the configuration
shift register externally.

Using the dynamic configuration capability of the
ProASICPLUS family PLLs helps designers adjust their
chip-level and board-level timing performance based on
changing operating conditions.

Figure 7 • PLL and UJTAG Interfacing via User Interface Block

Figure 8 • Sample Implementation of User Interface

UTAG

TDO

TDO

TDI
TMS
TCK
TRSTB

TDI

TMS

TCK

TRST

UIREG0
UIREG1
UIREG2
UIREG3
UIREG4
UIREG5
UIREG6
UIREG7
URSTB

UDRSH
UDRCAP

UDRCK
UDRUPD

UTDI
UTDO

Capture_DR
Shift_DR
Reset RefCLK

LOCK

GLB

IR[7:0]

CLK
Update_DR

TDO
TDI

SUPDATE

SSHIFT

SCLK

SDIN

MODE

SDOUT

SUPDATE

SSHIFT

SCLK

SDIN

MODE

SDOUT

SUPDATE

SDIN

SSHIFT

SCLK

MODE

SDOUT

D Q D

EN

Q

UDRCK
UDRUPD AND (UIRREG=20Hex)

UDRSH

UTDI

UDRCAP

UDRUPD

UDRSH

UTDI

UDRCK

(UIREG=21Hex)
8

Acte
Maxf
Cam
Unite
Tel:
Fax:
Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

http://www.actel.com

l Europe Ltd.
li Court, Riverside Way
berley, Surrey GU15 3YL
d Kingdom
+44 (0)1276 401450
+44 (0)1276 401490

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5192719-0/8.02

	Introduction
	PLL Macro Structure
	Figure 1�•� The Configuration MUX Architecture
	Figure 2�•� Timing Diagram
	Figure 3�•� Architecture and Operation of the Configuration Shift Register
	Figure 4�•� Dynamic ACTgen Selection of PLLCORE
	Figure 5�•� PLL Block Configuration via Control Bits

	Loading the Configuration Register
	Table 1�•� Configuration bits in the Shift Register
	JTAG Interface
	Figure 6�•� UJTAG Macro Block

	The UJTAG Interface
	Shifting the Configuration Data
	Table 2�•� UJTAG Interface Port Descriptions

	PLL Behavior During Configuration
	Figure 7�•� PLL and UJTAG Interfacing via User Interface Block
	Figure 8�•� Sample Implementation of User Interface

	Conclusion

