
 

April 1996

 

4-73

 

© 1996 Actel Corporation

 

Application Note

 

4

 

Implementing Multipliers 
with Actel FPGAs

 

Introduction

 

Hardware multiplication is a function often required for
system applications such as graphics, DSP, and process
control. The Actel architecture, which is multiplexer based,
allows efficient implementation of multipliers with high
performance. Furthermore, the Actel development tools
allow the user quickly to create multipliers by using the
appropriate algorithm and bit width needed for a specific
application. The 1200XL family is the focus of the
implementation of this application note, although other Actel
families could also be used.

 

Multiplier Theory

 

The function of a binary unsigned multiplier, like its decimal
counterpart, consists of a multiplicand (X), a multiplier (Y),
and a product (P). The result is the product of the multiplier
and the multiplicand (P = X * Y). Figure 1 shows the
complete multiplication of two four-bit numbers producing
an eight-bit product. As in decimal multiplication, the least
significant digit of the multiplier combines with each digit of
the multiplicand, forming a partial product (Y0X3, Y0X2,
Y0X1, Y0X0). Three other partial products are similarly
formed. To arrive at the final result, all four of the partial
products are added (P7, P6…P0). Note that the most
significant bit of the product (P7) is required, due to a
possible carry from the other bits.

 

Conventional Multiplier Algorithm

 

The conventional approach to implementing a multiplier in
digital logic is to AND individual multiplier and multiplicand
bits to generate the partial products (PP1, PP2, PP3, PP4).
For a four-bit multiplier, this would consist of 16 dual-input
AND gates and three adders, as shown in Figure 2. The
simplest method to sum the partial products is to have all
three adders to be eight bits. Not all of the partial products

generate eight bits, so smaller adders could be used.
However, tracking which partial sums can be dropped and
which need to propagate as carries to the next stage becomes
complex and time-consuming, especially with larger bit
widths. More important, the conventional multiplier
implementation is resource intensive and does not produce
optimal performance. Fortunately, another approach is
possible.

 

L-Booth Algorithm Implementation

 

The L-Booth algorithm employs an alternative technique
based on multiplexers, which are an ideal fit for the Actel
architecture. For the four-bit implementation, the
multiplier’s two least significant bits are handled separately
from the two most significant bits. Effectively, the
multiplexer replaces the first stage of partial sum generation.
Figure 3 illustrates the mathematics that explains the
L-Booth algorithm. The two least significant multiplier bits
(Y1, Y0) are handled separately from the two most significant
bits (Y3, Y2). In both cases, the four possible combinations of
the multiplier bits are covered with the multiplexer, resulting
in the partial products PPA and PPB. Specifically for
multiplexer A, the four combinations are zero (the trivial
case), X (when Y1=0 and Y0=1), X shifted left or 2X (when
Y1=1 and Y0=0), and 3X (when Y1=Y0=1). The multiplexers
are eight bits deep to accommodate all eight possible inputs
for the adders. To obtain the final product, the two partial
sums are added with an eight-bit adder. High-speed adders
are used in this implementation since shortest delay from
input to output is the primary design constraint. Figure 4
shows the implementation of the L-Booth multiplier. The
complete schematic for the fout-bit L-Booth multiplier is
shown in Figure 5. Note the use of the five-bit adder to
generate the required 3X input for the multiplexers. The
name of the schematic is 

 

LBMULT4

 

, indicating that it uses
the L-Booth algorithm.



 

4-74

 

Multiplicand

 

>

 

X3 X2 X1 X0

Multiplier

 

> x

 

Y3 Y2 Y1 Y0

1st partial product

 

> Y0X3 Y0X2 Y0X1 Y0X0

 

2nd partial product

 

> Y1X3 Y1X2 Y1X1 Y1X0

 

3rd partial product

 

> Y2X3 Y2X2 Y2X1 Y2X0

 

4th partial product

 

> + Y3X3 Y3X2 Y3X1 Y3X0

 

Final product

 

>

 

P7 P6 P5 P4 P3 P2 P1 P0

 

Figure 1 •

 

Four-Bit Binary Multiplication

 

Figure 2 •

 

Classical Implementation of Four-Bit Multiplier

X0
Y0

X1
Y0
X2
Y0
X3
Y0

PP1

PP2

PP3

PP4

P[7:0]



 

4-75

Implementing Multipliers with Actel FPGAs

 

4

 

X3 X2 X1 X0

Only 2 LSB used

 

> x

 

Y1 Y0

 

if Y1=0,Y0=0 | 0 0 0 0 0 0 0 0

if Y1=0, Y0=1 | 0 0 0 0 X3 X2 X1 X0

if Y1=1, Y0=0 | 0 0 0 X3 X2 X1 X0 0

if Y1=1, Y0=1 | 0 0 0 X3 X3+X2 X2+X1 X1+X0 0

 

Multiplexer A result

 

> 0 0 PPA5 PPA4 PPA3 PPA2 PPA1 PPA0

 

X3 X2 X1 X0

Only 2 MSB used

 

> x

 

Y3 Y2

 

if Y3=0,Y2=0 | 0 0 0 0 0 0 0 0

if Y3=0, Y2=1 | 0 0 X3 X2 X1 X0 0 0

if Y3=1, Y2=0 | 0 X3 X2 X1 X0 0 0 0

if Y2=1, Y2=1 | 0 X3 X3+X2 X2+X1 X1+X0 0 0 0

 

Multiplexer B result

 

> PPB7 PPB6 PPB5 PPB4 PPB3 PPB2 0 0

0 0 PPA5 PPA4 PPA3 PPA2 PPA1 PPA0

+ PPB7 PPB6 PPB5 PPB4 PPB3 PPB2 0 0

 

Final product

 

> P7 P6 P5 P4 P3 P2 P1 P0

 

Figure 3 •

 

Four-Bit Binary Multiplication Using L-Booth Algorithm

 

Figure 4 •

 

L-Booth Multiplier Implementation

0

X

2X

3X

Y1, Y0

0

X

2X

3X

Y3, Y2

P

PPA

PPB



 

4-76

 

Pipelined Multiplier

 

The previous multiplier implementations were entirely
combinatorial. The output product is valid after all input
values have propagated through the combinatorial logic. By
introducing registers between the levels of logic, the stages of
the multiplication can be broken up and synchronized with a
clock. By doing so, the effective speed of multiple
multiplications is increased, although the result is delayed by
the number of register stages that are added. This delay is
referred to as the 

 

circuit latency

 

. Figure 6 shows the
pipelined version of the four-bit multiplier, PMULT4. 

Two levels of registers are used in the PMULT4 design,
resulting in a latency of one cycle (i.e., the result appears one
clock cycle later as shown in Figure 7). The distribution of
registers is optimal since both stages contain three levels of
logic. (The five-bit adder has two levels combined with one
for the multiplexer, for a total of three levels. The eight-bit
adder has three levels of logic internal.) This means that the
multiplication can be done with three levels of combinatorial
logic, one register, and data setup. Furthermore, with the
1200XL family, a combinatorial level is absorbed within the
sequential module. This means that a four-bit multiplier
could be done at a frequency in excess of 60 MHz. (Actual

device performance is discussed in detail later in this
application note.) The performance can be further increased
at the cost of additional registers and circuit latency. 

 

Design Tools

 

Designing multipliers with the Actel development tools is
particularly easy since the basic blocks required (adders,
multiplexers, and registers) can be quickly created with the
ACTgen Macro Builder. Figure 8 shows the ACTgen main
menu with macro category selections. As an example, an
eight-bit fast adder with the name of 

 

SAMPLE

 

 will be created
with ACTgen. The adder menu in Figure 9 shows the available
options: adder variations, bus width, carry in, and carry out.
The summary report is shown in Figure 10, and the generated
symbol is shown in Figure 11. The multiplexers and registers
can be created equally quickly with ACTgen. Using this
approach, it is very easy to create multipliers of any bit width
by changing the ACTgen parameters. Another modification
that can be changed is the type of adder created by ACTgen.
By selecting a ripple adder instead of a high-speed one, a
more compact multiplier can be created. By making such a
change, the four-bit multiplier would require 20 percent
fewer modules. 

 

Figure 5 •

 

Schematic Implementation of Four-Bit L-Booth Multiplier



 

4-77

Implementing Multipliers with Actel FPGAs

 

4

 

Figure 6 •

 

Pipelined Four-Bit Multiplier

 

Figure 7 •

 

Timing Waveform of Pipelined Four-Bit Multiplier with One Cycle Latency

00 01 02 03 04 05 06 07

00 01 02 03 04 05 06 07

X

Y

SUM 000 001 004 009 016 025 036

 

Figure 8 •

 

ACTgen Macro Builder Main Menu

 

Figure 9 •

 

ACTgen Macro Builder Adder Menu



 

4-78

 

Hardware Description Language

 

Another approach to implementing multipliers is defining the
functionality in Hardware Description Language (HDL).
Generally, higher-level descriptions are fast to implement but
somewhat slower than a manual or macro generator
approach. A multiplier is particularly challenging since it is
exclusively an arithmetic function, which is typically not well
suited to pure synthesis algorithms. However, the Actel

ACTmap VHDL Synthesis tool performs very well. The design
was optimized for area and required only two modules more
than the best manual implementation.

The VHDL source file for a four-bit multiplier is shown in
Figure 12. Note how compact the required description is
compared with previous schematic implementations.
Furthermore, to create an eight-bit, sixteen-bit, or n-bit
version would require only changing the BIT_VECTOR
definitions.

 

Figure 10 •

 

ACTgen Macro Builder Summary Report

 

Figure 11 •

 

ACTgen-Generated Adder Symbol

DATA A [7:0]

SAMPLE

SUM [7:0]

DATA B [7:0]

 

library ASYL;

use ASYL.pkg_arith.all;

entity MULT4 is

port(X, Y: in BIT_VECTOR(3 downto 0);

  P: out BIT_VECTOR(7 downto 0));

end MULT4;

architecture ARCHI of 

MULT4 is

begin P <= X * Y;

end ARCHI;

 

Figure 12 •

 

VHDL Source Code for Four-Bit Multiplier



 

4-79

Implementing Multipliers with Actel FPGAs

 

4

Multiplier Performance

 

All of the multiplier approaches discussed have been
implemented in the Actel 1200XL devices. Table 1 shows all
of these including many of the statistics required to make an
educated decision on the best approach, depending on design
needs. As with most designs, there is almost always a
trade-off of system performance and design resources. In the
case of the multiplier implementations, this is also true. In
fact, there is a monotonic relationship of increasing
performance with increasing module count for every
multiplier implementation. The speed is obtained by
implementing the design for the 1225XL-1 device and
obtaining static timer worst-case commercial conditions after
place and route. The speed refers to the worst-case path from
input pad to output pad for the combinatorial multipliers and
the longest internal-clock-to-data path (including data setup

time). The “Util” column indicates what percentage of the
1225XL is being used by the multiplier. 

Tables 2 and 3 show the statistics for eight-bit and sixteen-bit
multipliers, respectively. As before, performance is based on
actual placed and routed designs using the Actel static timing
analyzer. 

 

Conclusion

 

Multipliers can be quickly and easily implemented in Actel
FPGAs, providing both efficient usage and high performance.
The 1200XL family is particularly well suited for the
applications. There is a range of options available to the user
when designing multipliers: speed/area trade-offs, latency,
and design method. Armed with this application information,
the Actel development tools, and the 1200XL devices,
designers can effectively create multipliers to meet their
individual requirements.

 

Table 1 •

 

Statistics of Four-Bit Multipliers

 

Design Description Device Speed
# 

Modules # Levels Latency Util

 

PMULT4 4 by 4 pipelined 1225XL-1 57 MHz 67 3 1 cycle 15%

LBMULT4 4 by 4 comb 1225XL-1 24 MHz 60 6 n/a 13%

PRMULT4 4 by 4 pipelined, ripple adder 1225XL-1 21 MHz 48 10 1 cycle 11%

VHDMULT4 4 by 4 comb, VHDL source 1225XL-1 19 MHz 50 8 n/a 12%

RBMULT4 4 by 4 comb, ripple adder 1225XL-1 14 MHz 48 12 n/a 11%

 

Table 2 •

 

 Statistics of Eight-Bit Multipliers

 

Design Description Device Speed
# 

Modules # Levels Latency Util

 

PMULT8 8 by 8 pipelined 1225XL-1 44 MHz 276 3 3 cycles 62%

LBMULT8 8 by 8 comb 1225XL-1 14 MHz 232 10 n/a 52%

PRMULT8 8 by 8 pipelined 1225XL-1 10 MHz 188 17 3 cycles 42%

RBMULT8 8 by 8 comb 1225XL-1    8 MHz 164 22 n/a 37%

VHDMULT8 8 by 8 comb, VHDL source 1225XL-1    8 MHz 325 22 n/a 73%

 

Table 3 •

 

Statistics of Sixteen-Bit Multipliers

 

Design Description Device Speed
# 

Modules # Levels Latency Util

 

PMULT16 16 by 16 pipelined 1280XL-1 28 MHz 1011 4 3 cycles 83%

LDMULT16 16 by 16 comb 1280XL-1    8 MHz 844 16 n/a 69%

PRMULT16 16 by 16 pipelined 1280XL-1    5 MHz 786 33 3 cycles 64%

RBMULT16 16 by 16 comb 1240XL-1    4 MHz 656 40 n/a 96%



 

4-80


