
Application Note
Axcelerator Family Memory Blocks

Introduction

As FPGA applications become more complex, designers’
expectations of FPGA capabilities grow, making embedded
memory blocks more and more essential in FPGA designs.
The Axcelerator family FPGAs contain from four (in the
AX125) to 64 (in the AX2000) blocks of embedded
RAM/FIFO. Each block is a 4.5k variable-aspect-ratio
dual-port RAM. The variable aspect ratio implies that each
block can be configured independently in both depth and
width. The allowable variable aspects are 128x36, 256x18,
512x9, 1kx4, 2kx2 or 4kx1. Moreover, the memory blocks can
be cascaded in both width and depth to build larger blocks.

The RAM blocks have one read port and one write port,
allowing simultaneous read and write operations.
Furthermore, the read and write port widths are specified
independently, allowing data bus conversion. The read and
write operations are synchronous using independent clocks.
The read access time from a RAM block is typically 2.2ns.

RAM blocks in the Axcelerator family can also operate in
ROM emulation mode. To establish ROM functionality, the
RAM blocks can be serially loaded via JTAG circuitry before
the device is functional.

Axcelerator memory blocks are located on the left side of
each core tile. Therefore, the number of available memory

blocks in each device depends on the number of core tiles.
For example, in an AX125 device with a single core tile, the
number of available memory blocks is 4, while the AX500,
with four core tiles, has 16 memory blocks. Note that the
AX250 is an exception since the core tile size is different
from the rest of the family, accommodating three memory
blocks.

Embedded Memory Block
Architecture

For a better understanding of the different features of the
Axcelerator family memory blocks and their functionality,
the user needs to understand the architecture of each
individual block.

The memory blocks of the Axcelerator family can be
configured as either RAM or FIFO. Since the configuration
for each is different, we will discuss RAM and FIFO blocks
separately even though each is implemented using the same
memory block.

RAM Block Architecture

As shown in Figure 1, the architecture of the Axcelerator
family RAM block consists of a memory core and associated
peripheral blocks. The signals are described in the
subsections that follow.

Figure 1 • The Axcelerator Family Embedded RAM Block

WW RW

W
C

LK

W
E

[4
:0

]

W
A

[1
:0

]

W
D

[3
5:

0]

R
C

LK

R
E

[4
:0

]

R
A

[1
:0

]

R
D

[3
5:

0]

S_WD S_RD

S_WA S_RA

S_WE S_RE

PIPE

WE[4:0]_P RE[4:0]_P

3 3
May 2002 1
© 2002 Actel Corporation

Axcelerator Family Memory Blocks
RD and WD

RD and WD are 36-bit busses carrying the read and write
data, respectively. These busses are linked to the adjacent
memory blocks to allow cascading.

RA and WA

RA and WA are 12-bit read and write address busses,
respectively. A width of 12 allows addressing the largest
configuration in depth (4kx1). For RAM configurations with
less depth the unused LSBs of these busses should be
grounded. For example in a 2kx2 RAM configuration, RA[0]
and WA[0] are grounded.

RE and WE

There are two 5-bit independent enable controls: WE for
write data and RE for read data. Read and write functions
can be performed if the enable input to the memory core is
active. The enable signals have independent polarity
control. One of the five enable bits is used as a regular
enable signal to the memory core. The other four bits are
used as extra address lines to implement larger memory
configurations by cascading memory blocks. Therefore, up
to 16 Axcelerator family RAM blocks can be cascaded; this is
the maximum number of memory blocks in a column. The
embedded control logic handles assigning the proper values
to the control signals for cascading purposes.

RCLK and WCLK

RCLK and WCLK are read and write clocks, respectively.
The read and write operations can be carried out
independently either on the positive or negative edge of the
clock (user-selectable). RCLK and WCLK signals are
explicitly routed to each RAM block.

 RW and WW

RW and WW are 3-bit busses used for RAM data width
configuration. As mentioned earlier, the memory blocks can
be configured with different aspect ratios. These ratios are
determined by RW and WW for read and write ports,
respectively. Table 1 indicates the possible values for WW
and the resulting configurations. The RW bus is similar to
WW.

PIPE

To have a pipelined read output, the PIPE signal should be
set high. As shown in Figure 1 on page 1, the read output of
the memory core is input to a MUX. By setting PIPE high,
the output will be registered prior to the RD bus. Therefore,
in a pipelined RAM block, two active edges of RCLK are
required to have the read data available on the RD bus.
Hence, when the PIPE is on, there is no memory access time
involved in the read cycle. Therefore, RAM blocks can
operate in two read modules: pipelined and transparent.
The mode selection is accessible to the user in the ACTgen
macro builder.

After power up the initial values in the RAM cells are
unknown. The initialization of the RAM can be done by
writing to the memory cells or loading the RAM blocks
through JTAG ports. Refer to Actel’s web site for future
application notes regarding details on the ROM Emulation
mode in Axcelerator devices.

FIFO Block Architecture

The implementation of the FIFO block is slightly different
from a RAM. Figure 2 on page 3 shows the architecture of
the Axcelerator family synchronous FIFO blocks.

The FIFO block components shown in Figure 2 on page 3 are
provided with every RAM block and are controlled by the
five programmable bits of DEPTH. The LSB of DEPTH
enables the FIFO logic, and the upper four bits determine
the total depth of the FIFO blocks. Therefore, the FIFO
blocks, similar to the RAM blocks, can be cascaded up to a
maximum of 16 in a core-tile column. This will be discussed
in detail later in the “Cascading Memory Blocks” section on
page 4. It can be seen from Figure 2 on page 3 that the read
address is pipelined in two stages with the write clock
(WCLK) and the write address is pipelined in two stages
with the read clock (RCLK). This has been done to avoid
metastability problems of the addresses.

The functionality of the signals that are also used in a RAM
block implementation, shown in Figure 1 on page 1, was
described in the previous section. Here we discuss the
signals that are unique to the FIFO block controller.

FREN and FWEN

FREN and FWEN signals can separately enable the
synchronous FIFO read and write operations, respectively,
by overriding the RE[4] and WE[4] signals. As can be seen
in Figure 2 on page 3, RE[4] and WE[4] are used as the
write and read enables to the RAM block. Read and write
enable have independent polarity control and are
user-selectable.

Flags

The FIFO block has 4 flags: FULL, EMPTY, AFULL, and
AEMPTY. The computation of the FULL flag is done in the

Table 1 • Word Width Configuration for RAM

WW Write Word Width
WA LSB to be

Grounded

000 4kx1 None

001 2kx2 WA[0]

010 1kx4 WA[1:0]

011 512x9 WA[2:0]

100 256x18 WA[3:0]

101 128x36 WA[4:0]

11x Reserved N/A
2

Axcelerator Family Memory Blocks
WCLK domain by registering the two previous values of the
read address. If the current write address is equal to the
registered value of the read address, the FULL flag will be
asserted. The FULL flag disables further write operations by
turning off WE[4]. Similarly the EMPTY flag computation is
done in the RCLK domain by registering the two previous
values of the write address. The assertion of the EMPTY flag
disables further read operations by turning off RE[4].
Figure 2 indicates that the AFULL flag value is determined
simply by comparing the write address with a
predetermined value (AFVAL[7:0]). Similarly the result of
comparison of the read address with the AEVAL[7:0] will
determine the AEMPTY flag’s value. The values for the
almost empty and almost full flags can be set dynamically
(i.e., during device operation). This will be discussed later
when we explain the macros created by ACTgen. If not used,
AEVAL and AFVAL should be grounded.

The allowable values for AEVAL and AFVAL depend on the
data width. Representing the data width by “w”, Table 2 on
page 4 lists the step size for those flags.

If the memory block is configured as FIFO, the read and
write addresses are generated by two independent counters

(designated as CNT16 in Figure 2). The outputs of the
counters are buffered onto the address lines. EMPTY and
FREN can disable the read address counter to prevent
further read operations. Similarly, FULL and FRWN signals
control the enable input of the write address counter.

When Axcelerator FIFO uses less address space than the
address space defined by the configuration, the FULL flag
will not assert at the intended Full. Therefore, AFULL
should be configured to assert for the intended Full. For
example, when the user requires a memory block as an
80x36 FIFO, the FIFO is configured as 128X36. The FULL
flag will assert at 128 not 80. In this case, the WW is set to
101 (representing 128x38 configuration) and therefore, the
user is able to set AFVAL to 80 (refer to Table 2 on page 4
for legal AFVAL values) and use it as a FULL flag.

DEPTH

The enable inputs of the buffers that are loading the
address bus of the memory block are controlled by the
DEPTH signal. DEPTH is five bits wide. The LSB of DEPTH
is used to enable or disable the synchronous FIFO
configuration. In other words, if the embedded memory
blocks are configured as RAM, then the LSB of DEPTH is set

Figure 2 • The Synchronous FIFO Block in Axcelerator Family Devices

RCLK

WD

WCLK

CLR

FWEN

REN

CNT 16
E

CNT 16
E

DEPTH

=

=

AFVAL

AEVAL

>

>=
S

U
B

 1
6

RAM

RD [n-1:0]
WD [n-1:0]

RCLK
WCLK
RA [J:0]
WA [J:0]

REN
WEN

FULL

AEMPTY

AFULL

EMPTY

RD
 3

Axcelerator Family Memory Blocks
to ‘0’ and the address lines of the memory block are no
longer loaded by the address counters. If the user wants to
configure the memory block as FIFO, the LSB of DEPTH
should be tied high. The four MSBs of DEPTH are used to
cascade the FIFO blocks if required. Hence, no more than 16
FIFO blocks can be cascaded. Table 2 shows the possible
values for DEPTH in the FIFO configuration.

Looking at Table 2, if the FIFO block is configured as a
512x9 block (i.e. w=011), then the minimum value for
AEVAL and AFVAL is 28-3, which is equal to 32. Notice that
the next possible value for those flags is 64.

CLR

The CLR input to the FIFO is an asynchronous active-high
signal used to initialize the FIFO block. By asserting the
CLR the read and write address point to ‘0’ (the very first
cell in the FIFO block), the EMPTY and AEMPTY flags are
set to ‘1’ while the FULL and AFULL flags are ‘0’. Once the
CLR signal is high, the read output bits of the FIFO block
are set to’0‘. When CLR signal is set back to low, the write

procedure starts at the next active edge of WCLK and the
write address will advance from 0 to 1. Since the write
address is registered in two stages, it takes 2 RCLK active
edges for the new address value (e.g., 1) to propagate to the
comparator and be piped to the RCLK domain. Hence, after
2 RCLK active edges, the EMPTY flag is deactivated and the
data can be read at the third active edge of the RCLK. In
other words, it takes three active edges of RCLK to read the
data after releasing the CLR signal.

Cascading Memory Blocks

As mentioned in previous sections, the memory blocks can
be cascaded to implement larger blocks. There are different
control signals in RAM and FIFO blocks to control the
cascading procedure. These signals are WE, RE , and
DEPTH. However, the variable aspect ratio of memory
blocks allows cascading in various configurations. The
implementation of larger memory blocks can be categorized
by two approaches: cascading in depth or width. In this
section we will discuss the difference between them as well
as implementation of the two configurations.

Cascading in depth means that all the building blocks have
the same read and write width as the required memory
block, but the address bus width of the required large
memory block is larger than the address bus width of each
building block. For example, a 512x18 RAM block can be
implemented by cascading two 256x18 RAM blocks, as
shown in Figure 3.

Table 2 • DEPTH Configuration for Cascaded FIFO

DEPTH
Cascaded

Blocks FULL
Address Bus
WCNT/RCNT

AEVAL/AFVAL
step size

00001 1 212-w [15:w] 28-w

00011 2 213-w [15:w] 28-w

00111 4 214-w [15:w] 28-w

01111 8 215-w [15:w] 28-w

11111 16 216-w [15:w] 28-w

Note: w is the data width in Table 1.

Figure 3 • Cascading Memory Blocks

512 x 18

512 x 9

512 x 9

WD RD

WADDR RADDR

WD RD

WADDR RADDR

RADDR

 9

RD

 18

WADDR

WD

 9

 18
9

9

9

9

9

9

9

9

Cascading in Width

512 x 18

256 x 18

256 x 18

WD RD

WADDR RADDR

WD RADDR

WADDR RD

RADDR

 9
RD

 1818

18

Cascading in Depth

8

1 DEMUX
WADDR

WD

 8

 18
18

9

18

8

8

1
DEMUX

MUX

8

8

4

Axcelerator Family Memory Blocks
On the other hand, with width cascading the width of the
memory block address bus is equal to the address bus width
of each building block. Each of the basic memory blocks is
configured with the same depth as the required memory
block. For example a 512x18 RAM block can be
implemented with two 512x9 RAM blocks (Figure 3 on
page 4). In order to build larger memory blocks, memory
cores can be cascaded both in depth and width if required.

The preliminary characterization indicates that building
large memory blocks by cascading in width shows better
timing performance that the blocks implemented by
cascading in depth. However, in some cases the only way to
implement larger blocks is by cascading blocks in depth
(e.g., implementation of an 8kx1). In those cases, the user
should try to keep the number of the depth-cascaded blocks
as low as possible to improve the timing performance.

ACTgen Macro Builder

Actel recommends that users generate the required macros
with ACTgen software if possible. ACTgen generates and
cascades memory blocks in a highly-efficient manner. In
this section, we discuss the flow for generation of memory
blocks in ACTgen and the associated macro features.

Figure 4 shows the ACTgen GUI of the RAM macro targeting
the Axcelerator family.

The GUI has four major sections: device, pipeline, write, and
read. By selecting pipelined RAM, the read data will be
registered before being loaded onto the read data bus. The
write and read depth and width are determined
independently. However, the user should note that the
following equation must hold:

Read depth * Read width = Write depth * Write width

ACTgen automatically cascades the memory blocks in the
most efficient manner.

Figure 4 • ACTgen GUI for Generating RAM Block
 5

Axcelerator Family Memory Blocks
Another useful feature of the ACTgen GUI is port mapping.
By selecting this feature, the user can map the generated
RAM block port names into his/her desired names. This
facilitates using the memory blocks in larger designs.
Figure 5 shows the GUI of the port mapping feature.

The ACTgen GUI for FIFO block generation is slightly
different from RAM blocks. Figure 6 shows the GUI during
FIFO block generation.

Figure 5 • Port Mapping GUI

Figure 6 • ACTgen GUI for FIFO Generation
6

Axcelerator Family Memory Blocks
The Variations drop-down menu gives the option to select
AEMPTY and AFULL flags. If the AFULL/AEMPTY flags are
chosen as static, their values must be entered in the
“Almost Full Value” and “Almost Empty Value” windows,
considering the possible values mentioned in Table 2 on
page 4. If the flags are chosen to be dynamic, then an 8-bit
port for each flag will be available to the user in the
generated macro. In dynamic mode, the values for the flags
can be changed while the device is operational. A “None”
option also exists under Variations; by selecting it, the AE
and AF flags will be disabled.

The depth and width of the FIFO block must be entered in
the respective boxes. The minimum values for the depth and
the width of a FIFO block are ‘1.’

FIFO generation also supports a port mapping feature
similar to the RAM block (Figure 7). Please note that on the
port mapping list, AEMPTY and AFULL represent the values
of the AEMPTY and AFULL flags, respectively, if dynamic
configuration is chosen.

Conclusion

The Axcelerator family devices provide very flexible memory
blocks that make it easier to fit the memory blocks in a
variety of designs. The memory blocks can run at very high
speeds (the read time for a RAM block is 2.2ns). The
Axcelerator devices use a single block that can be
configured as either RAM or FIFO. The memory blocks
support variable aspect ratios to support bus conversion and
can be cascaded to build larger memories. Cascading in
width results in better timing performance of the memory
blocks. The ACTgen macro builder generates the required
memory blocks in a highly-efficient, high-performance
manner.

Figure 7 • Port Mapping GUI in FIFO Generation
 7

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401590

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668

5192694-3/5.02

	Introduction
	Embedded Memory Block Architecture
	RAM Block Architecture
	Figure 1�•� The Axcelerator Family Embedded RAM Block
	Table 1�•� Word Width Configuration for RAM

	FIFO Block Architecture
	Figure 2�•� The Synchronous FIFO Block in Axcelerator Family Devices
	Table 2�•� DEPTH Configuration for Cascaded FIFO

	Cascading Memory Blocks
	Figure 3�•� Cascading Memory Blocks

	ACTgen Macro Builder
	Figure 4�•� ACTgen GUI for Generating RAM Block
	Figure 5�•� Port Mapping GUI
	Figure 6�•� ACTgen GUI for FIFO Generation
	Figure 7�•� Port Mapping GUI in FIFO Generation

	Conclusion

