

April 1996

5-33

© 1996 Actel Corporation

Application Note

5

A 155 Mbps ATM Network Interface Controller
Using Actel’s New 3200DX FPGAs

Given that the asynchronous transmission mode (ATM)
peripheral market is highly competitive and time-to-market is
critical, logic designers must meet shrinking design cycles.
Until recently, designers had to rely on gate arrays to deliver
the performance and features required for network
peripherals. The current generation of FPGAs, however,
allows the designer to achieve the performance and capacity
required for ATM applications and to meet the key
time-to-market goals of these fast-evolving applications.

Introduction

An ATM network interface card (NIC) requires high-speed
system logic functions such as DMA controllers, memory
(DRAM, SDRAM, VRAM) controllers, FIFOs, and bus
interfaces. This paper describes a 155 Mbps ATM NIC
controller that can interface to any standard microprocessor
bus. This design, in conjunction with a microprocessor
controller and a standard SRAM device, is capable of
implementing the segmentation and reassembly (SAR)
functions for AAL3/4 communications. This includes the
control and interface to the ATM physical layer interface
(Utopia), a 1 MB dual-port SRAM, and a host bus. The host
bus was chosen as a generic bus for simplicity; however, the
discussion applies to any of the popular busing architectures
such as PCI, VME, EISA, and SBUS.

Controller Architecture

A block diagram of an ATM NIC is shown in Figure 1. The
Utopia interface provides a standard data-path protocol for
interfacing to physical layer components. A received cell is
written into a 64 x 8 FIFO, which can store an entire 53-byte
ATM cell, and is clocked at the 25 MHz Utopia clock rate.

The received ATM cell is read from the FIFO at 66 MHz and
the cell is written into system memory (dual-port RAM). The
dual-port RAM temporarily stores received data packets
while they are being reassembled. The RAM space can be
organized such that cells with different virtual channel
identifiers (VCI) and virtual path identifiers (VPI) addresses
are stored in separate memory areas for reassembly. Thus,
the RAM can be accessed based upon the VCI/VPI fields. The
addressable contents contain pointers to memory space
where reassembly takes place. The DRAM controller reads
and writes data to the dual-port RAM device.

The first 5 bytes of an ATM cell contain overhead information,
such as destination address, and an error control byte. When
reading the ATM cell from the receive FIFO, the first 5 bytes
of the cell are directed to the header error control (HEC)
block. The HEC is an 8-bit cyclic redundancy code (CRC),
which detects transmission errors in the ATM cell header.

ATM Cell Definition

Figure 2 shows the definition of the ATM cell. The cell is
composed of 53 bytes, with 5 header bytes and 48 data bytes.
The header contains 4 bytes of addressing and 1 byte of error
checking information. The addressing information is one of
two different types, the user-network interface (UNI) and the
network node interface (NNI).

The UNI has one significant difference from the NNI. The first
byte of the UNI contains a generic flow control (GFC) field,
whereas the GFC is not required in the NNI. The GFC
designator is used only for traffic traversing the UNI
interface, where the operation, administration, and
management (OAM) functions are required.

The remainder of the UNI and NNI fields contain VCIs and
VPIs. VCIs and VPIs are used to establish connections within
the network and can be thought of as the user’s connection
address. Unlike Ethernet, these addresses are assigned on a
connection-on-demand basis, not a fixed number for each
user.

The HEC field is an error check field and can also correct for
single bit errors. It is calculated only on the header; the
48-byte payload is not included.

Receive FIFO Design

The receive FIFO is implemented in a dual-port SRAM
internal to the FPGA. Data from the Utopia interface is
written into the FIFO until the entire cell is available. The
FIFO is implemented in the dual-port SRAM and uses the
synchronous operation mode. The controller provides the
data to the FIFO and activates the write enable signal. On the
next write clock, the data is written into the FIFO.

Data can be read out of the FIFO independently from the
read port because of the dual-port nature of the SRAM. The
read port can operate at the required 66 MHz to achieve the
required bandwidth on the 32-bit bus.

5-34

A variety of FIFO can be automatically generated by the
ACTgen Macro Builder tool of the Actel Designer Series
software. The user can specify the size, features, and other
key functions of the FIFO and ACTgen automatically
constructs the requested FIFO “flavor.”

DRAM Controller

The DRAM control circuitry is shown in Figure 3. The key
blocks of the design are the address multiplexer, the refresh
counters, and the RAS/CAS select logic. Timing on RAS and
CAS is preserved by using bidirectional buffers on the RAS
and CAS select lines, a common technique when interfacing
to DRAMs.

Figure 1 •

Controller Architecture

Figure 2 •

ATM Cell Definition

8

Bus
Interface

Data Bus

Utopia
Interface

(PHY)

Host Bus (PCI, VME, EISA, SBUS)

Dual-Port
SRAM

Receiver Control

Data

Clock
FIFO Control

64x8
FIFO

DRAM
Controller

32

Control

32

Bus-Width
Translation

32

Address
RAS
CAS

32

HEC

(External to
3200DX)

VPI

VPI VCI

VCI

VCI PC C

HEC

PAYLOAD 48-words

8 7 6 5 4 3 2 1 BITS

NNI UNI

GFC VPI

VCI

HEC

PAYLOAD 48-words

VPI VCI

VCI PC C

8 7 6 5 4 3 2 1 BITS

5-35

A 155 Mbps ATM Network Interface Controller Using Actel’s New 3200DX FPGAs

5

A simple DRAM controller is available from Actel as a
predefined function for the 3200DX family.

Packet Assembly

Packet assembly is accomplished in the DRAM. The typical
contents of the DRAM are shown in Figure 4. Packets are
assembled in the DRAM as the data is emptied from the
FIFO. A linked list data structure is used to distribute the
data to the required packet. Once a packet is completed, the
receive buffer link list is updated. The output DMA controller
processes the linked list structure in hardware, keeping
processor overhead low. The processor can use its processing
power on managing the higher-level protocol algorithms
because the low-level data transfers are handled in the
FPGA.

A simple DMA controller is available from Actel and can be
customized by the user to implement more complex transfers.
The design uses VHDL to make it easy to customize. Changes
to the state machine make possible additional features, like
automatic chaining, burst processing, and bandwidth
management.

Header Error Control Design

The header error control logic determines if an error has
occurred in the header and can correct for any single bit
error. The generator polynomial for the header is
X

8

 + X

2

 + X + 1 and is implemented with XOR gates, as
shown in Figure 5. A parallel implementation of the CRC is
also possible. It uses a larger number of components but can

compute the full 8-bit CRC in a single clock cycle. A VHDL
code fragment is shown in the following display. The X[7-0]
bits are the contents of the CRC register, and the D[7-0] bits
are the 8-bit data input. The full design is available from Actel
and can be implemented in any Actel FPGA family.

X[7] <= D[7] xor D[1] xor D[0] xor X[7];
X[6] <= D[6] xor D[0] xor X[7] xor X[6];
X[5] <= D[5] xor X[7] xor X[6] xor X[5];
X[4] <= D[4] xor X[6] xor X[5] xor X[4];
X[3] <= D[3] xor X[5] xor X[4] xor X[3];
X[2] <= D[2] xor X[4] xor X[3] xor X[2];
X[1] <= D[1] xor X[3] xor X[2] xor X[1];
X[0] <= D[0] xor X[2] xor X[1] xor X[0];

Processor Interface Design

The processor interface can be a generic high-speed
synchronous interface using a block transfer mechanism to
keep bus bandwidth high. Since ATM is a packet-oriented
protocol, a block-oriented transfer mechanism to the
processor memory is most efficient. The DMA controller can
be a complex controller with features like chaining and
threading, bus throttling, and other bandwidth-optimizing
features—or a simple, fixed-size, block fill controller. The
optimum design will depend on the processing needed by the
CPU and the performance requirements. FPGAs can be very
effective at accelerating processing requirements by getting
data set up prior to CPU processing. Many algorithms can be
significantly sped up if the data is first organized by a smart
DMA controller. This allows the CPU to focus on the
processing portion of the algorithm.

Figure 3 •

DRAM Controller Design

RDRV

CASO

CAS

RASO

RAS

CAS3

CAS2

CAS1

CAS0

PRAS

Address
MUX

Row

Column

Select

Timing Control
State Machine

5-36

FPGA Implementation

The design can be implemented in an Actel 32200DX FPGA
and a single bank of DRAM, and it would operate in excess of
66 MHz internal to the FPGA with a 33 MHz interface to the
processor. Actel-provided designs for the FIFO, DRAM
controller, and DMA controller help speed the design and
ensure that key timing constraints can be met, prior to
completion of the entire design.

Applications like this, with complex interactions at the
system level, may require additional logic to be designed for
use during debugging. The Actel 3200DX family, with its
Actionprobe capability, allows the designer to observe all
internal signals during device operation, making it easy to
identify design errors without needing to change the design.

Summary

ATM network interface cards require high-speed system logic
functions such as FIFOs, memory controllers, DMA
controllers, and decoders. The 3200DX family, with its system
logic integration features of high-capacity, fast dual-port
SRAM and wide-decode function, provides just the right mix
of capabilities for applications like ATM network interface
cards. These system logic functions, along with the
predesigned functions for FIFOs, DMA controllers, and
DRAM, make the 3200DX family an ideal
quick-time-to-market solution.

Figure 4 •

Packet Reassembly

Figure 5 •

Header Error Control Design

Temp

Address
Flags
Address
Flags
•
•
•
Address
Flags

•
•
•
•

•
•

•
•
•
•

—
—

•
•
•

—

Address
Flags
•
•
•
Address
Flags

Input Data X0X7 X6 X5 X4 X3 X2 X1 Output Data

